Differential Equations (AN5): Διαφορά μεταξύ των αναθεωρήσεων
Γραμμή 109: | Γραμμή 109: | ||
<!-- In order to edit the bibliography, visit the webpage --> | <!-- In order to edit the bibliography, visit the webpage --> | ||
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF: | <!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAM104-Biblio --> | ||
{{ | {{MAM104-Biblio}} |
Αναθεώρηση της 00:45, 5 Νοεμβρίου 2022
Graduate Courses Outlines - Department of Mathematics
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | AN5 |
Semester | 2 |
Course Title | Differential Equations |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | General Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students | Yes |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
This course is aiming at familiarizing the students with a variety of advanced subjects related to differential equations. Both classical and modern subjects are studied. After attending this course, the students should be able to:
|
---|---|
General Competences |
|
Syllabus
Second order linear ordinary differential equations: Sturm-type theorems, oscillation and non-oscillation theorems. Reducing differential equation problems to integral ones. Volterra integral equations: existence and uniqueness of solutions. Existence of solutions. The linear equation. The first order linear equation. Some problems on the semi-axis. Fredholm theory for linear integral equations: the resolvent kernel. The entire functions of Fredholm and their applications. Eigenvalues, eigenfunctions and conjugate functions. Some integral inequalities: Gronwall and Bihari Lemmas, and their applications. Delay differential equations: Introduction, Examples and the stepping method. Some remarkable examples and some "wrong" questions. Lipschitz condition and uniqueness for the basic initial problem. Notations and uniqueness for systems with bounded delay. Existence for systems with bounded delay. Linear delay differential systems: superposition. Fixed coefficients. Variation of parameters. Stability for delayed differential systems: Definitions and examples. Asymptotic stability. Linear and almost linear differential systems. Fractional differential equations: Definitions and basic calculus. Initial and boundary systems. Dynamical systems: definitions and calculus. Equations and problems. Various subjects.
Teaching and Learning Methods - Evaluation
Delivery |
Lectures on class | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
The students can choose one of the following options:
If both methods are used, then the final grade is the maximum of the two. The criteria regarding the grading are publised in the "E-Course" platform. |
Attached Bibliography
- C. Corduneanu, Principles of Differential and Integral Equations
- R. D. Driver, Ordinary and Delay Differential Equations
- T. A. Burton, Volterra Integral and Differential Equations
- R. K. Miller, Nonlinear Volterra Integral Equations
- P. Hartman, Ordinary Differential Equations
- Κ. Diethelm, The Analysis of Fractional Differential Equations
- Y. Zhou, Basic Theory of Fractional Differential Equations
- M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications.