Riemannian Geometry (ΓΕ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Γραμμή 79: | Γραμμή 79: | ||
! Delivery | ! Delivery | ||
| | | | ||
Face-to-face | |||
|- | |- | ||
! Use of Information and Communications Technology | ! Use of Information and Communications Technology | ||
| | | - | ||
|- | |- | ||
! Teaching Methods | ! Teaching Methods | ||
Γραμμή 94: | Γραμμή 93: | ||
| 39 | | 39 | ||
|- | |- | ||
| | | Autonomous Study | ||
| | | 78 | ||
|- | |- | ||
| | | Solution of Exercises - Homeworks | ||
| | | 70.5 | ||
|- | |- | ||
| Course total | | Course total | ||
Γραμμή 106: | Γραμμή 105: | ||
! Student Performance Evaluation | ! Student Performance Evaluation | ||
| | | | ||
Written final examination, presentations of HomeWorks. | |||
|} | |} | ||
Αναθεώρηση της 10:37, 5 Νοεμβρίου 2022
Graduate Courses Outlines - Department of Mathematics
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΓΕ3 |
Semester | 2 |
Course Title | Riemannian Geometry |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses |
Differential Geometry (ΓΕ2) |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
In this lecture we introduce basic notions of Riemannian Geometry. More precisely, we introduce among others the notions of Riemannian metric, Levi-Civita connection, holonomy, curvature operator, Ricci curvature, sectional curvature, scalar curvature and Jacobi field. |
---|---|
General Competences |
|
Syllabus
- Riemannian metrics, isometries, conformal maps.
- Geodesics and exponential maps.
- Parallel transport and holonomy.
- Hopf-Rinow’s Theorem.
- Curvature operator, Ricci curvature, scalar curvature.
- Riemannian submanifolds.
- Gauss-Codazzi-Ricci equations.
- 1st and 2nd variation of length.
- Jacobi fields.
- Comparison theorems.
- Homeomorphic sphere theorem.
Teaching and Learning Methods - Evaluation
Delivery |
Face-to-face | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Written final examination, presentations of HomeWorks. |