Real Analysis (AN1): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Γραμμή 50: | Γραμμή 50: | ||
! Learning outcomes | ! Learning outcomes | ||
| | | | ||
The plan of the course is the deeper study of the theory of metric spaces. The Stone - Weirstrass theorem is presented and also there are studied theorems that involve families of equicontinuous functions. Among others there are studied the following topics: the Cantor set, totally bounded and compact metric spaces, the Hausdorff metric and the Tietze theorem. Moreover, applications of the above theorems are given. | |||
|- | |- | ||
! General Competences | ! General Competences | ||
| | | | ||
The objective of the course is the graduate student’s ability achievement in analysis and synthesis of deeper knowledge of Real Analysis. | |||
|} | |} | ||
Αναθεώρηση της 20:19, 9 Νοεμβρίου 2022
Graduate Courses Outlines - Department of Mathematics
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | AN1 |
Semester | 1 |
Course Title | Real Analysis |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | General Background |
Prerequisite Courses |
Introduction to Topology |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
The plan of the course is the deeper study of the theory of metric spaces. The Stone - Weirstrass theorem is presented and also there are studied theorems that involve families of equicontinuous functions. Among others there are studied the following topics: the Cantor set, totally bounded and compact metric spaces, the Hausdorff metric and the Tietze theorem. Moreover, applications of the above theorems are given. |
---|---|
General Competences |
The objective of the course is the graduate student’s ability achievement in analysis and synthesis of deeper knowledge of Real Analysis. |
Syllabus
ΧΧΧ
Teaching and Learning Methods - Evaluation
Delivery |
ΧΧΧ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
ΧΧΧ | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
ΧΧΧ |