Mathematical Programming (ΣΕΕ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Μαθηματικός Προγραμματισμός (ΣEE3)|Ελληνική Έκδοση]] | * [[Μαθηματικός Προγραμματισμός (ΣEE3)|Ελληνική Έκδοση]] | ||
{{Course-Graduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === |
Τελευταία αναθεώρηση της 16:39, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Graduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΣΣΕ3 |
Semester | 1 |
Course Title | Mathematical Programming |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes | The course learning outcomes are: the presentation of mathematical programming problems, the presentation of their solution techniques and their applications in several areas such as production, distribution, routing, etc. Upon successful completion of the course the student will be able to:
|
---|---|
General Competences |
|
Syllabus
Linear programming problems formulation. The Simplex algorithm. Big M-method. Two-Phase method. Revised Simplex method. Duality theory. Dual Simplex algorithm. Sensitivity analysis. Parametric analysis. Transportation problem. Transhipment problem. Assignment problem. Dynamic programming: Bellman principle of optimality, finite and infinite horizon problems. Applications of dynamic programming. Inventory control.
Teaching and Learning Methods - Evaluation
Delivery | Face-to-face | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | Lindo/Lingo Software, Mathematica, Email, Class Web | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation | LANGUAGE OF EVALUATION: Greek METHODS OF EVALUATION: Written work (30%), Final exam (70%). |
Attached Bibliography
- Καρακώστας, Κ. (2002). Γραμμικά Μοντέλα: Παλινδρόμηση και Ανάλυση Διακύμανσης. Πανεπιστήμιο Ιωαννίνων.
- Λουκάς, Σ. (2014). Γενικό Γραμμικό Μοντέλο. Πανεπιστήμιο Ιωαννίνων.
- Οικονόμου, Π. και Καρώνη, Χ. (2010). Στατιστικά Μοντέλα Παλινδρόμησης, Εκδόσεις Συμεών.
- Draper, N.R. and H. Smith, (1998). Applied Regression Analysis, Third Edition, Wiley,
- Searle, S.R., (1997). Linear Models, Wiley Classics Library, Wiley,
- Seber, G.A.F. and A.J. Lee, (2003). Linear Regression Analysis, 2nd Edition, Wiley.