Computational Statistics Analysis (ΣΕΕ12): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Υπολογιστική Στατιστική Ανάλυση (ΣEE12)|Ελληνική Έκδοση]] | ||
{{Course-Graduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === |
Τελευταία αναθεώρηση της 16:39, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Graduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΣΣΕ12 |
Semester | 2 |
Course Title |
Computational Statistics Analysis |
Independent Teaching Activities | Lectures-Laboratory (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type |
Specialized general knowledge |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students |
Yes (in English, reading Course) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
Students completing this course should be able to:
|
---|---|
General Competences |
|
Syllabus
This course covers the following topics and relies on heavy use of R: random number generation techniques. The jacknife, bootstrap and their theoretical properties. Cross validation, kernel density estimation, local regression. Monte Carlo simulation and its applications.
Teaching and Learning Methods - Evaluation
Delivery | Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
Use of ICT in communication with students | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English). |
Attached Bibliography
- Davison, A. C., Hinkley, D. V., (1997). Bootstrap methods and their application. Cambridge University Press.
- Rizzo, M. L., (2007). Statistical computing with R. Chapman & Hall/CRC.
- Robert, C. P., Casella, G., (2009). Introducing Monte Carlo methods with R. Springer Verlag.
- Gentle, J. E., (2009). Computational Statistics, Springer.
- Givens, G.H. and Hoeting, J.A., (2012). Computational Statistics, Wiley.
- [Περιοδικό / Journal] Statistics and Computing
- [Περιοδικό / Journal] Computational Statistics.
- [Περιοδικό / Journal] Computational Statistics & Data Analysis.