Non Parametric Statistics (ΣΕΕ14): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Μη Παραμετρική Στατιστική (ΣEE14)|Ελληνική Έκδοση]] | ||
{{Course-Graduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === |
Τελευταία αναθεώρηση της 16:39, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Graduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΣΣΕ14 |
Semester | 2 |
Course Title |
Non Parametric Statistics |
Independent Teaching Activities | Lectures-Laboratory (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type |
Specialized general knowledge |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students |
Yes (in English, reading Course) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
This course aims at introducing nonparametric techniques in statistical analysis and the use of these techniques in a variety of disciplines. The course will focus on the so-called smoothing procedures for curve estimation. Students taking this course will develop an appreciation of nonparametric statistics and will be able to:
|
---|---|
General Competences |
|
Syllabus
Presentation and Introduction to nonparametric methods. Nonparametric estimation of the probability density function (p.d.f.) by histogram and by kernel density estimation. Asymptotic properties of the derived estimates. Non parametric estimation of the cumulative distribution function (e.c.d.f.) with the empirical c.d.f., kernel smoothing and properties of the derived estimatres. Methods and techniques for bandwidth selection. Improvements of kernel estimates: elimination of boundary bias, variable bandwidth kernel estimates and transformation-based estimates. Nonparametric regression: the Nadaraya-Watson estimate and the local polynomial estimate. Multivariate kernel estimation and special topics.
Teaching and Learning Methods - Evaluation
Delivery | Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
| ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English). |
Attached Bibliography
- Silverman, B. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall.
- Wand, M.P. and Jones, M.C. (1994). Kernel smoothing, First Edition, Chapman and Hall.
- Simonoff, J.S. (1996). Smoothing Methods in Statistics, Springer.
- Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall.
- Loader, C. (1999). Local Regression and Likelihood, Springer.
- Scott, D. (2015). Multivariate Density Estimation: Theory, Practice, and Visualization, Second edition, Wiley.
- Takezawa, K. (2006). Introduction to Nonparametric Regression, Wiley.
- Wasserman, L. (2006). All of Nonparametric Statistics, Springer.
- Klemela, J. (2009). Smoothing of Multivariate Data: Density Estimation and Visualization, Wiley.
- Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation Springer.
- Chacón, J.E. and Duong, T. (2018). Multivariate Kernel Smoothing and its Applications, Taylor and Francis.
- [Περιοδικό / Journal] Journal of Nonparametric Statistics.