Fractal Sets and Applications (EM7): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Μορφοκλασματικά Σύνολα και Εφαρμογές (Fractals) (ΕΜ7)|Ελληνική Έκδοση]] | * [[Μορφοκλασματικά Σύνολα και Εφαρμογές (Fractals) (ΕΜ7)|Ελληνική Έκδοση]] | ||
{{Course-Graduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === |
Τελευταία αναθεώρηση της 05:15, 16 Ιουνίου 2023
- Ελληνική Έκδοση
- Graduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | EM7 |
Semester | 2 |
Course Title | Fractal Sets and Applications |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
The course is an introduction to Fractals and structures that have self-similarity under scale change. The objectives of the course are:
Upon completion of the course the postgraduate student will be able to use analytical and computational techniques to study problems related to Fractals and to further deepen their understanding. |
---|---|
General Competences |
The course aims to enable the postgraduate student to:
All the above will give the students the opportunity to work in an international multidisciplinary environment. |
Syllabus
Self-similarity under scale change, Fractal sets, Hausdorff dimension, Mandelbrot and Julia sets, Affine transformations in Euclidean space, Transformations in metric spaces, Theorem of contraction of images, Fractal construction, Collage theorem, Applications of Fractal sets. The course includes training in computational methods in the computer laboratory (Applied and Computational Mathematics Lab).
Teaching and Learning Methods - Evaluation
Delivery |
In class | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
Use of computer (Mechanics) lab | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
|
Attached Bibliography
- Ο Θαυμαστός Κόσμος των Fractal, 2004, Α. Μπούντης, Εκδότης: Liberal Books Μονοπρόσωπη ΕΠΕ.
- Fractals Everywhere, 2nd edition, 2000, M. F. Barnsley, Publisher: Morgan Kaufmann.