Θέματα Πτυχιακής Εργασίας 2023-2024: Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
|||
Γραμμή 3: | Γραμμή 3: | ||
==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-57 Σταματάκης Μάριος-Γεώργιος] ==== | ==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-57 Σταματάκης Μάριος-Γεώργιος] ==== | ||
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής. | |||
; Η αρχή των μεγάλων αποκλίσεων | ; Η αρχή των μεγάλων αποκλίσεων | ||
Γραμμή 16: | Γραμμή 16: | ||
==== [https://math.uoi.gr/index.php/gr/2016-03-06-20-24-01/2016-03-10-16-23-14/13-greek/depgr/857-2016-03-17-09-59-55 Κατσαμπέκης Ανάργυρος] ==== | ==== [https://math.uoi.gr/index.php/gr/2016-03-06-20-24-01/2016-03-10-16-23-14/13-greek/depgr/857-2016-03-17-09-59-55 Κατσαμπέκης Ανάργυρος] ==== | ||
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής. | |||
; Βάσεις Gröbner ενός διωνυμικού ιδεώδους ακμών γραφήματος | ; Βάσεις Gröbner ενός διωνυμικού ιδεώδους ακμών γραφήματος | ||
Γραμμή 23: | Γραμμή 23: | ||
==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-34 Κεχαγιάς Επαμεινώνδας] ==== | ==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-34 Κεχαγιάς Επαμεινώνδας] ==== | ||
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής. | |||
; Το Πρωταρχικό Θεώρημα της Θεωρίας Αναλλοιώτων και το Φράγμα της Nother | ; Το Πρωταρχικό Θεώρημα της Θεωρίας Αναλλοιώτων και το Φράγμα της Nother | ||
Γραμμή 35: | Γραμμή 35: | ||
==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-55 Καρακατσάνη Φωτεινή] ==== | ==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-55 Καρακατσάνη Φωτεινή] ==== | ||
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής. | |||
; Θεωρητική και αριθμητική μελέτη συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν την εξάντληση των δασικών πόρων λόγω της πληθυσμιακής πίεσης και της εκβιομηχάνισης | ; Θεωρητική και αριθμητική μελέτη συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν την εξάντληση των δασικών πόρων λόγω της πληθυσμιακής πίεσης και της εκβιομηχάνισης | ||
Γραμμή 44: | Γραμμή 44: | ||
==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-56 Μπέκος Μιχάλης] ==== | ==== [https://math.uoi.gr/index.php/gr/2016-03-09-11-02-28/2016-03-09-11-02-29/2016-03-09-11-02-56 Μπέκος Μιχάλης] ==== | ||
Ως προαπαιτούμενα μαθήματα επιλογής έχουν τεθεί τα: "'''Σχεδίαση και Ανάλυση Αλγορίθμων'''" και "'''Δομές Δεδομένων'''". | |||
; Σχεδίαση γραφημάτων | ; Σχεδίαση γραφημάτων |
Αναθεώρηση της 16:14, 18 Ιουλίου 2023
Τομέας Μαθηματικής Ανάλυσης
Σταματάκης Μάριος-Γεώργιος
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.
- Η αρχή των μεγάλων αποκλίσεων
- (περιγραφή)
- Το πρόβλημα βέλτιστης μεταφοράς μάζας
- (περιγραφή)
- Μετρική Γεωμετρία
- (περιγραφή)
Τομέας Άλγεβρας και Γεωμετρίας
Κατσαμπέκης Ανάργυρος
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.
- Βάσεις Gröbner ενός διωνυμικού ιδεώδους ακμών γραφήματος
- Σε κάθε απλό γράφημα G αντιστοιχίζουμε το διωνυμικό ιδεώδες ακμών J(G). Χρησιμοποιούμε τα μονοπάτια του G για να υπολογίσουμε μία βάση Gröbner για το J(G) ως προς την λεξικογραφική διάταξη. Επίσης δίνουμε ικανές και αναγκαίες συνθήκες για να έχει το ιδεώδες J(G) μια τετραγωνική βάση Gröbner ως προς κάποια μονωνυμική διάταξη.
Κεχαγιάς Επαμεινώνδας
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.
- Το Πρωταρχικό Θεώρημα της Θεωρίας Αναλλοιώτων και το Φράγμα της Nother
Τομέας Πιθανοτήτων, Στατιστικής και Επιχειρησιακής Έρευνας
-
Τομέας Εφαρμοσμένων και Υπολογιστικών Μαθηματικών
Καρακατσάνη Φωτεινή
Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.
- Θεωρητική και αριθμητική μελέτη συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν την εξάντληση των δασικών πόρων λόγω της πληθυσμιακής πίεσης και της εκβιομηχάνισης
- Τα δάση καλύπτουν περίπου το ένα τρίτο της επιφάνειας της Γης και, σύμφωνα με την WWF, παρέχουν ενδιαιτήματα για το «80% της χερσαίας βιοποικιλότητας του κόσμου» και διατηρούν μια ισορροπία οξυγόνου και διοξειδίου του άνθρακα στην ατμόσφαιρα. Οι άνθρωποι σήμερα καθαρίζουν κάθε δευτερόλεπτο μια περιοχή μεγέθους γηπέδου ποδοσφαίρου από τα δέντρα είτε για χρήση των δασικών πόρων, είτε για να χρησιμοποιήσουν τις εκτάσεις αυτές με μη βιώσιμο τρόπο για τη γεωργία, την εκτροφή βοοειδών, την εξόρυξη, το πετρέλαιο, στέγαση κ.λ.π. Η συνεχής αποψίλωση των δασών έχει καταστροφικές επιπτώσεις στο οικοσύστημά μας. Είναι σαφές ότι η συνεχής αύξηση του ανθρώπινου πληθυσμού και της εκβιομηχάνισης και η μη επαρκής διατήρηση των δασικών πόρων ή μη προσπάθειες βιωσιμότητας, θα οδηγήσουν στην εξαφάνιση των δασών, καταστρέφοντας αναπόφευκτα τον πλανήτη όπως τον ξέρουμε σήμερα. Σε αυτή την πτυχιακή εργασία θα μελετηθούν (με θεωρητικές και αριθμητικές τεχνικές) συστήματα συνήθων διαφορικών εξισώσεων που μοντελοποιούν τη σχέση μεταξύ της αύξησης του ανθρώπινου πληθυσμού, της αντίστοιχης ανάπτυξης της βιομηχανίας, και της εξάντλησης των απαραίτητων δασικών πόρων του πλανήτη μας.
- Μελέτη μη γραμμικών συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν επιπτώσεις της κλιματικής αλλαγής στην οικολογία και την ανθρώπινη υγεία
- Η υπερθέρμανση του πλανήτη έχει αποτελέσει θέμα τεράστιων συζητήσεων και διαφωνιών την τελευταία δεκαετία λόγω των πιθανών πολυάριθμων δυσμενών επιπτώσεών της στην οικολογία και την ανθρώπινη υγεία. Το θέμα αυτής της πτυχιακής εργασίας θα είναι η μελέτη, με αναλυτικές και αριθμητικές μεθόδους, μη γραμμικών συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν τις επιπτώσεις της κλιματικής αλλαγής είτε στην οικολογία είτε στη μετάδοση ασθενειών. Αριθμητικές μέθοδοι, όπως οι μέθοδοι Runge-Kutta θα εφαρμοστούν για την αριθμητική επίλυση των παραπάνω συστημάτων διαφορικών εξισώσεων.
Μπέκος Μιχάλης
Ως προαπαιτούμενα μαθήματα επιλογής έχουν τεθεί τα: "Σχεδίαση και Ανάλυση Αλγορίθμων" και "Δομές Δεδομένων".
- Σχεδίαση γραφημάτων
- Αποτελεί τομέα των μαθηματικών και της επιστήμης των υπολογιστών που συνδυάζει μεθόδους από τη γεωμετρική θεωρία γραφημάτων και την οπτικοποίηση πληροφοριών για την παραγωγή απεικονίσεων γραφημάτων στο Ευκλείδειο επίπεδο ή στον τρισδιάστατο χώρο. Για μια σύντομη εισαγωγή, μπορείτε να παρακολουθήσετε εδώ μία σχετική διάλεξη, η οποία αποτελεί μέρος μιας σειράς διαλέξεων στο αντικείμενο αυτό, του Καθ. P. Kindermann.
- Γραμμικές διατάξεις γραφημάτων
- Αποτελεί τομέα της επιστήμης των υπολογιστών και της συνδυαστικής που εστιάζει στη μελέτη διατάξεων των κορυφών ενός γραφήματος υπό το πρίσμα διαφορετικών συναρτήσεων βελτιστοποίησης. Για μια σύντομη επισκόπηση, μπορείτε να παρακολουθήσετε την εισαγωγή του J. Grime στο NumberPhile, την οποία θα βρείτε εδώ.
- Επίλυση δύσκολων προβλημάτων με SAT
- Αποτελεί τομέα της επιστήμης των υπολογιστών που εστιάζει στη μοντελοποίηση δύσκολων προβλημάτων συνδυαστικής ή βελτιστοποίησης ως ισοδύναμα προβλήματα SAT (Boolean Satisfiability Problems) και στην επίλυση τους μέσω αντίστοιχων λογισμικών επίλυσης. Για μια εφαρμογή σε γραμμικές διατάξεις γραφημάτων δείτε εδώ.
- Αλγοριθμική σήμανση χαρτών
- Αποτελεί μέρος της επιστήμης των υπολογιστών, της χαρτογραφίας και δη των γεωγραφικών συστημάτων πληροφοριών που εστιάζει στη μελέτη και ανάπτυξη αλγοριθμικών μεθόδων σήμανσης χαρτών με χρήση προσδιοριστικών ετικετών. Μια εισαγωγή στα προβλήματα που εξετάζονται μπορείτε να βρείτε εδώ.