Introduction to Expert Systems (MAE846): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Γραμμή 65: | Γραμμή 65: | ||
* Logic Programming for knowledge representation. | * Logic Programming for knowledge representation. | ||
After completing the course the student can handle: | After completing the course the student can handle: | ||
* theoretical documentation of problems | |||
* solving exercises | |||
* implementations-applications | |||
|- | |- | ||
! General Competences | ! General Competences | ||
Γραμμή 74: | Γραμμή 74: | ||
* Implementation- Consolidation | * Implementation- Consolidation | ||
|} | |} | ||
=== Syllabus === | === Syllabus === | ||
* Ιntroduction to Expert Systems | * Ιntroduction to Expert Systems |
Αναθεώρηση της 20:58, 29 Ιουνίου 2022
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE846 |
Semester |
8 |
Course Title |
Introduction to Expert Systems |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses |
Logic Programming, Data Structure |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | - |
Learning Outcomes
Learning outcomes |
The goal of this course is the deeper understanding of PROLOG. During the course a detailed examination of the following topics are done:
After completing the course the student can handle:
|
---|---|
General Competences |
|
Syllabus
- Ιntroduction to Expert Systems
- Main Features of Expert Systems, classic examples
- Knowledge acquisition and verification, knowledge representation, inference and interpretation, consistency and uncertainties.
- Inference techniques
- Rule-based forward chaining Expert Systems
- Rule-based backward chaining Expert Systems
- Rule-based Expert Systems
- Expert Systems tools
- Users Interface
- Machine learning, decision making machines, Expert Systems examples.
Teaching and Learning Methods - Evaluation
Delivery |
Face to face | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | Yes , Use of Natural Language and Mathematical Problems Processing Laboratory | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final test |
Attached Bibliography
- Γεώργιος Ι. Δουκίδης, Μάριος Κ. Αγγελίδης, "Έμπειρα συστήματα, τεχνητή νοημοσύνη και LISP", ISBN 960-08-0004-9, ISBN-13 978-960-08-0004-3
- Σπύρος Τζαφέστας, "ΕΜΠΕΙΡΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ", ISBN: - (Κωδικός Βιβλίου στον Εύδοξο: 89871)
- Παναγιωτόπουλος Ιωάννης - Χρήστος Π., "Νέες Μορφές Τεχνολογίας - Γενικευμένα Αυτόματα Συστήματα - Έμπειρα Συστήματα Turbo Prolog"