Approximation Theory (AA2): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Θεωρία Προσεγγίσεως (ΑΑ2)|Ελληνική Έκδοση]] | ||
* [[Graduate Courses Outlines]] | * [[Graduate Courses Outlines]] | ||
* [https://math.uoi.gr/index.php/en/ Department of Mathematics] | * [https://math.uoi.gr/index.php/en/ Department of Mathematics] |
Αναθεώρηση της 17:39, 25 Νοεμβρίου 2022
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | AA2 |
Semester | 1 |
Course Title | Approximation Theory |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
After successful end of this course, students will be able to:
|
---|---|
General Competences |
|
Syllabus
- General Theory of existence and uniqueness of approximation.
- Uniform Approximation: Weierstrass, Bernstein, Jackson theorems, approximation of continuous functions, approximation of discrete functions, Remez algorithm.
- Least Squares Polynomial Approximation: Systems of Normal Equations, Orthogonal Polynomials, approximation of continuous functions, approximation of discrete functions, connection with Uniform approximation.
- First Power Polynomial Approximation: Characterization, approximation of continuous functions, approximation of discrete functions,.
- Rational Approximation: Characterization, connection with Uniform approximation, Remez algorithm.
- Rational Interpolation.
Teaching and Learning Methods - Evaluation
Delivery |
In the classroom | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Written examination |
Attached Bibliography
- Theodor J. Rivlin: An Introduction to the Approximation of Functions. Dover Publications Inc. New York, 1969.