Πρότυπο:MAM126-Biblio: Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με '# Casella, G. and Berger, R.L. (2002). Statistical Inference. Duxbury Press; 2nd edition. # Mood A. et al. (1974). Introduction to the theory of Statistics. McGraw-Hill. # Roussas G. (1997). A course in Mathematical Statistics. Academic Press. # Hogg, R and Craig, A. (1978). Introduction to Mathematical Statistics. # Lehmann, E.L. and Casella, G. (1998). Theory of point estimation. Springer; 2nd edition. # Bickel, P.J. and Doksum, K.A. (1977). Mathematical Statist...')
 
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
# Casella, G. and Berger, R.L. (2002). Statistical Inference. Duxbury Press; 2nd edition.
* S.S. Chern, Minimal submanifolds of a Riemannian manifold, University of Kansas, Τμήμα Μαθηματικών Technical Report 19, 1968.
# Mood A. et al. (1974). Introduction to the theory of Statistics. McGraw-Hill.
* T. Colding and W. Minicozzi, A course in minimal surfaces, Graduate Studies in Mathematics, Volume 121, 2011.
# Roussas G. (1997). A course in Mathematical Statistics. Academic Press.
* M. Dajczer, Submanifolds and isometric immersions, Publish or Perish, Volume 13, 1990.
# Hogg, R and Craig, A. (1978). Introduction to Mathematical Statistics.
* R. Greene, Complex differential geometry, Lecture Notes in Mathematics, Volume 1263, 1987.
# Lehmann, E.L. and Casella, G. (1998). Theory of point estimation. Springer; 2nd edition.
* R. Harvey and H.B. Lawson, Calibrated geometries, Acta Math. Volume 1982, 47-157.
# Bickel, P.J. and Doksum, K.A. (1977). Mathematical Statistics, Basic Ideas and Selected Topics, Vol. 1. Holden-Day.
* J. Jost, Harmonic maps between Riemann surfaces, Lecture Notes in Mathematics, Volume 1062, 1984.
# Rohatgi, V.K. (1976). An Introduction to Probability Theory and Mathematical Statistics. John Wiley and Sons, New York.
* R. Ossermann, A survey of minimal surfaces, Van Nostrand Reinhold Company, New York, 1969.
# Rao, C. R. (1973). Linear Statistical Inference and its Applications. Wiley: 2nd edition.
* H.-S. Wu, The Bochner technique in differential geometry, Math. Rep. Volume 3, 1988.
# Lehmann, E.L. and Romano, J.P. (2005). Testing statistical hypotheses. Springer; Third edition, New York.
* Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer Verlag.
# Van der Vaart (1998). Asymptotic Statistics. Cambridge University Press.
* De Loera, Rambau, Santos: Triangulations, Structures for Algorithms and Applications. Springer Verlag.
# Τ. ΠΑΠΑΙΩΑΝΝΟΥ-Κ. ΦΕΡΕΝΤΙΝΟΥ: Μαθηματική Στατιστική Εκδόσεις Σταμούλη.
# Ηλιόπουλος, Γ. (2013). Βασικές Μέθοδοι Εκτίμησης Παραμέτρων. Εκδόσεις Σταμούλη; 2η έκδοση.

Αναθεώρηση της 12:27, 26 Αυγούστου 2022

  • S.S. Chern, Minimal submanifolds of a Riemannian manifold, University of Kansas, Τμήμα Μαθηματικών Technical Report 19, 1968.
  • T. Colding and W. Minicozzi, A course in minimal surfaces, Graduate Studies in Mathematics, Volume 121, 2011.
  • M. Dajczer, Submanifolds and isometric immersions, Publish or Perish, Volume 13, 1990.
  • R. Greene, Complex differential geometry, Lecture Notes in Mathematics, Volume 1263, 1987.
  • R. Harvey and H.B. Lawson, Calibrated geometries, Acta Math. Volume 1982, 47-157.
  • J. Jost, Harmonic maps between Riemann surfaces, Lecture Notes in Mathematics, Volume 1062, 1984.
  • R. Ossermann, A survey of minimal surfaces, Van Nostrand Reinhold Company, New York, 1969.
  • H.-S. Wu, The Bochner technique in differential geometry, Math. Rep. Volume 3, 1988.
  • Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer Verlag.
  • De Loera, Rambau, Santos: Triangulations, Structures for Algorithms and Applications. Springer Verlag.