Differential Geometry (ΓΕ2): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Γραμμή 48: | Γραμμή 48: | ||
|- | |- | ||
! Learning outcomes | ! Learning outcomes | ||
| | | | ||
In this lecture we introduce basic notions of Differential Geometry. More precisely, we introduce among others the notions of manifold, manifold with boundary, vector bundle, connection, parallel transport, submanifold, differential form and de Rham cohomology. | |||
|- | |- | ||
! General Competences | ! General Competences | ||
| | | | ||
* Work autonomously | |||
* Work in teams | |||
* Develop critical thinking skills. | |||
|} | |} | ||
Αναθεώρηση της 01:27, 5 Νοεμβρίου 2022
Graduate Courses Outlines - Department of Mathematics
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΓΕ2 |
Semester | 1 |
Course Title | Differential Geometry |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses |
Linear Algebra, Topology, Calculus of Several Variables. |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
In this lecture we introduce basic notions of Differential Geometry. More precisely, we introduce among others the notions of manifold, manifold with boundary, vector bundle, connection, parallel transport, submanifold, differential form and de Rham cohomology. |
---|---|
General Competences |
|
Syllabus
Differentiable manifolds, immersions, embeddings, submanifolds, vector fields, orientation covering spaces, partition of unity, Riemannian manifolds, Levi-Civita connection, curvature tensor, geodesics, exponential map, Isometric immersions, second fundamental form, hypersurfaces, Gauss, Codazzi and Ricci equations, applications.
Teaching and Learning Methods - Evaluation
Delivery | Direct | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation | Written final examination. |
Attached Bibliography
- M. do Carmo, Riemannian Geometry, Birkhaüser Boston, Inc., Boston, MA, 1992.
- J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer, 2017.
- J. Lee, Introduction to smooth manifolds, Second edition, Graduate Texts in Mathematics, 218, Springer, 2013.
- Δ. Κουτρουφιώτης, Διαφορική Γεωμετρία, Πανεπιστήμιο Ιωαννίνων, 1994.