Algebra II (ΑΛ2): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Γραμμή 76: Γραμμή 76:
! Delivery
! Delivery
|
|
ΧΧΧ
Face to face
|-
|-
! Use of Information and Communications Technology
! Use of Information and Communications Technology
|
| -
ΧΧΧ
|-
|-
! Teaching Methods
! Teaching Methods
Γραμμή 91: Γραμμή 90:
| 39
| 39
|-
|-
| ΧΧΧ
| Student's study Hours
| 000
| 78
|-
|-
| ΧΧΧ
| Exercises: Problem Solving
| 000
| 70.5
|-
|-
| Course total  
| Course total  
Γραμμή 103: Γραμμή 102:
! Student Performance Evaluation
! Student Performance Evaluation
|
|
ΧΧΧ
The evaluation is based on the combined performance of the graduate student in:
* Weekly homeworks,
* Presentations during the semester,
* Major Homework at the end of the course,
* Written examination at the end of the courses in Greek with questions and problems of development of theoretical topics and problem solving.
|}
|}



Αναθεώρηση της 20:57, 10 Νοεμβρίου 2022

Graduate Courses Outlines - Department of Mathematics

General

School School of Science
Academic Unit Department of Mathematics
Level of Studies Graduate
Course Code ΑΛ2
Semester 2
Course Title Algebra II
Independent Teaching Activities Lectures (Weekly Teaching Hours: 3, Credits: 7.5)
Course Type General Background
Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students Yes (in English)
Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

The main purpose of the course is to introduce the main concepts, tools and methods of Commutative Algebra, and to indicate some of its direct applications to various areas of Mathematics, most notably in Algebraic Geometry, and related sciences.

At the end of the course, we expect the student to understand the basic concepts and the main theorems that are analysed in the course, to understand how these are applied to concrete examples of algebraic and geometric origin, to be able to apply them to derive new elementary consequences in various related fields, and finally to be able to perform some (not so obvious) calculations related to the thematic core of the course.

General Competences

The course aims at enabling the graduate to acquire the ability to analyse and synthesize basic knowledge of Commutative Algebra, which is an important part of modern Mathematics, in particular of contemporary Algebra and Geometry. When the graduate comes in for the first time in connection with the basic notions of Commutative Algebra and its applications to Algebraic Geometry, (s)he strengthens her/his creative, analytical and inductive thinking, and her/his ability to apply abstract knowledge in related fields.

Syllabus

  • Introduction to Algebraic Geometry.
  • Dimension.  
  • Krull’s Principal Ideal Theorem.
  • Regular sequences.
  • Depth.
  • Cohen-Macaulay rings.
  • Gorenstein rings.
  • Free resolutions.
  • Hilbert functions.

Teaching and Learning Methods - Evaluation

Delivery

Face to face

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures 39
Student's study Hours 78
Exercises: Problem Solving 70.5
Course total 187.5
Student Performance Evaluation

The evaluation is based on the combined performance of the graduate student in:

  • Weekly homeworks,
  • Presentations during the semester,
  • Major Homework at the end of the course,
  • Written examination at the end of the courses in Greek with questions and problems of development of theoretical topics and problem solving.

Attached Bibliography

Πρότυπο:MAM199-Biblio