Numerical Linear Algebra I (ΑΑ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
μ (Ο Mathwikiadmin μετακίνησε τη σελίδα Numerical Linear Algebra I (ΑΑ3Α) στην Numerical Linear Algebra I (ΑΑ3) χωρίς να αφήσει ανακατεύθυνση) |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
[[Graduate Courses Outlines]] | * [[xxx|Ελληνική Έκδοση]] | ||
* [[Graduate Courses Outlines]] | |||
* [https://math.uoi.gr/index.php/en/ Department of Mathematics] | |||
=== General === | === General === |
Αναθεώρηση της 15:53, 25 Νοεμβρίου 2022
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | AA3 |
Semester | 1 |
Course Title | Numerical Linear Algebra I |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes | After successful end of this course, students will be able to:
|
---|---|
General Competences |
|
Syllabus
Perron-Frobenius Theory of Nonnegative Matrices: Irreducible Matrices, Cyclic and Primitive Matrices, Reducible Matrices, Extension of the Perron-Frobenius Theory, M-matrices, Applications of the Perron-Frobenius Theory. Minimization methods for the Solution of Linear Systems: Conjugate Gradient Method, Convergence Theory, Error Analysis, Preconditioning Techniques, Preconditioned Conjugate Gradient Methods, Applications.
Teaching and Learning Methods - Evaluation
Delivery | In the class | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation | Written examination - Oral Examination. |
Attached Bibliography
- Theodor J. Rivlin: An Introduction to the Approximation of Functions. Dover Publications Inc. New York, 1969.