Mathematical Programming (ΣΕΕ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με '=== General === {| class="wikitable" |- ! School | School of Science |- ! Academic Unit | Department of Mathematics |- ! Level of Studies | Graduate |- ! Course Code | ΣΣΕ3 |- ! Semester | 1 |- ! Course Title | Mathematical Programing |- ! Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |- ! Course Type | Special Background |- ! Prerequisite Courses | - |- ! Language of Instruction and Examinations | Greek |- ! Is the Course...') |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
[[Graduate Courses Outlines]] - [https://math.uoi.gr Department of Mathematics] | |||
=== General === | === General === | ||
Αναθεώρηση της 08:49, 2 Ιουλίου 2022
Graduate Courses Outlines - Department of Mathematics
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΣΣΕ3 |
Semester | 1 |
Course Title | Mathematical Programing |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students | Yes (in English) |
Course Website (URL) | - |
Learning Outcomes
Learning outcomes | The course learning outcomes are: the presentation of mathematical programming problems, the presentation of their solution techniques and their applications in several areas such as production, distribution, routing, etc. Upon successful completion of the course the student will be able to:
|
---|---|
General Competences |
|
Syllabus
Linear programming problems formulation. The Simplex algorithm. Big M-method. Two-Phase method. Revised Simplex method. Duality theory. Dual Simplex algorithm. Sensitivity analysis. Parametric analysis. Transportation problem. Transhipment problem. Assignment problem. Dynamic programming: Bellman principle of optimality, finite and infinite horizon problems. Applications of dynamic programming. Inventory control.
Teaching and Learning Methods - Evaluation
Delivery | Face-to-face | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | Lindo/Lingo Software, Mathematica, Email, Class Web | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation | LANGUAGE OF EVALUATION: Greek METHODS OF EVALUATION: Written work (30%), Final exam (70%). |
Attached Bibliography
Suggested bibliography:
- Bellman, R.E.. Dynamic Programming, Princeton University Press, 1957, Princeton, NJ. Republished 2003
- Bertsekas D.P. Dynamic Programming and Optimal Control, Vols I and II, Athena Scientific, 1995, (3rd Edition Vol. I, 2005, 4th Edition Vol. II, 2012),
- Bertsimas D. and J.N. Tsitsiklis Introduction to Linear Optimization, Athena Scientific 1997.
- Gass S. Linear Programming Methods and Applications, McGraw-Hill 1985
- Hadley G. Linear Programming, Addison-Wesley Publishing Company, INC, 1965
- Taha H., Επιχειρησιακή Έρευνα Εκδόσεις Α. Τζιολα & ΥΙΟΙ Α.Ε., 2011
- Hillier F.S. and G.J. Lieberman Introduction Operations research. The McGraw-Hill Companies, 2001
- Johnson L. A. and D. C Douglas, Operations research in production planning scheduling and inventory control. John Willey and Sons, New-York, 1974
- Silver E. A., D.F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling. John Willey and Sons, New-York, 3rd Edition, 1998
- Tersine R.J., Principles of inventory and material management, Prentice Hall International Inc, New Jersey, 4rd Edition, 1994
- Wagner H.M and T.M Within (1958) Dynamic version of the economic lot size model. Management Science, 5(1), 89-96
- Winston W.L., Operations Research (Applications and algorithms), Duxbury Press (International Thomson Publishing) 1994.
- Βασιλειου Π. και Τσαντας Ν., Εισαγωγή στην επιχειρησιακή έρευνα, Εκδόσεις ΖΗΤΗ 2000.
- Κολετσος Ι., και Στογιαννης Δ. Εισαγωγή στην επιχειρησιακή έρευνα, Εκδόσεις Συμεών, 2012.
- Κουνιας Σ. και Φακινος Δ., Γραμμικός Προγραμματισμός, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη 1999.
- Λουκακης M., Επιχειρησιακή έρευνα γραμμικός προγραμματισμός, Εκδοτικό Κέντρο Βορείου Ελλάδας, 1994.
- Παπαρριζος Κ., Γραμμικός Προγραμματισμός. Εκδόσεις Ζυγός, Θεσσαλονίκη 1999.
- Σισκος Γ., Γραμμικός Προγραμματισμός, Εκδόσεις Νέων Τεχνολογιών, Αθήνα 1998.
- Φακινου Δ. και Οικονόμου Α., Εισαγωγή στην επιχειρησιακή έρευνα - Θεωρία και Ασκήσεις, Αθήνα 2003.
Related academic journals:
- Mathematical Programming Journal, Series A and Series B
- INFORMS Transactions on Education (ITE)
- Interfaces
Related academic journals: