Non Linear Programming (ΣΕΕ7): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
| Γραμμή 1: | Γραμμή 1: | ||
* [[Μη Γραμμικός Προγραμματισμός (ΣEE7)|Ελληνική Έκδοση]] | * [[Μη Γραμμικός Προγραμματισμός (ΣEE7)|Ελληνική Έκδοση]] | ||
{{Course-Graduate-Top-EN}} | {{Course-Graduate-Top-EN}} | ||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === | ||
Τελευταία αναθεώρηση της 17:39, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Graduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
| School | School of Science |
|---|---|
| Academic Unit | Department of Mathematics |
| Level of Studies | Graduate |
| Course Code | ΣΣΕ7 |
| Semester | 2 |
| Course Title | Non Linear Programing |
| Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
| Course Type | Special Background |
| Prerequisite Courses | - |
| Language of Instruction and Examinations | Greek |
| Is the Course Offered to Erasmus Students | Yes (in English) |
| Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
| Learning outcomes | The course aims to introduce students to the fundamentals of non-linear optimization. Upon successful completion of the course the student will be able to:
|
|---|---|
| General Competences |
|
Syllabus
Introduction to unconstrained and constrained optimization, Lagrange Multipliers, Karush-Kuhn-Tucker conditions, Line Search, Trust Region, Conjugate Gradient, Newton, Quasi-Newton methods, Quadratic Programming, Penalty Barrier and Augmented Lagrangian Methods.
Teaching and Learning Methods - Evaluation
| Delivery | Face-to-face | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Use of Information and Communications Technology | Lindo/Lingo Software, Mathematica, Email, class web | ||||||||||
| Teaching Methods |
| ||||||||||
| Student Performance Evaluation | LANGUAGE OF EVALUATION: Greek METHODS OF EVALUATION: Written work (30%), Final exam (70%). |
Attached Bibliography
- Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. 3rd Edition. Wiley.
- Fang, K.T., and Zhang, Y.T.. (1990). Generalized Multivariate Analysis. Springer. Berlin.
- Flury, B. (1997). A first course in multivariate statistics. Springer.
- Johnson, R. A. and Wichern, D. W. (2006). Applied Multivariate Statistical Analysis. Prentice Hall.
- Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press.
- Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley.
- Rencher, A. C. (1995). Methods of Multivariate Analysis. Wiley.
- Srivastava, M. S. (2002). Methods of multivariate statistics. Wiley.