Meteorology (MAE802)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 19:22, 29 Ιουνίου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με '=== General === {| class="wikitable" |- ! School | School of Science |- ! Academic Unit | Department of Mathematics |- ! Level of Studies | Undergraduate |- ! Course Code | MAE802 |- ! Semester | 8 |- ! Course Title | Meteorology |- ! Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 6) |- ! Course Type | Special Background |- ! Prerequisite Courses | - |- ! Language of Instruction and Examinations | Greek |- ! Is the Course Offered to...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

MAE802

Semester

8

Course Title

Meteorology

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) -

In the Ioannina University platform e-course

Learning Outcomes

Learning outcomes

The aim of the course is to give students the opportunity to be familiar with the basic principles of Meteorology and realize if they are interested in working, studying or doing research on this scientific field in the future. Specifically, after the successful completion of the course, the students will be able to:

  • Explain the definitions and the quantitative and qualitative characteristics of the various meteorological parameters.
  • Describe and explain the various meteorological phenomena.
  • Describe and explain the main measurement techniques in Meteorology and the meteorological instruments.
General Competences
  • Search for, analysis and synthesis of data and information, with the use of the necessary technology
  • Working independently
  • Respect for the natural environment
  • Production of free, creative and inductive thinking

Syllabus

Weather and climate. Composition and vertical structure of the atmosphere. Solar radiation and mechanisms of heat transfer in the atmosphere. Air temperature. Atmospheric pressure. Wind. Large-scale and small-scale circulations in the atmosphere. Atmospheric humidity. Atmospheric stability. Clouds, fog, dew and frost. Precipitation (rain, snow, etc.). Fronts. Atmospheric disturbances. Measurement techniques and meteorological instruments. Fundamental elements of weather analysis and forecasting. Educational visit to the Laboratory of Meteorology of the Physics department and the university meteorological station.

Teaching and Learning Methods - Evaluation

Delivery

Face to face

Use of Information and Communications Technology -

. Asynchronous online learning via Moodle is used for providing the lecture slides and the communication with the students.

Teaching Methods
Activity Semester Workload
Lectures (13X3) 39
Individual study 90
Solving exercises 15
Educational visits 6
Course total 150
Student Performance Evaluation

Written examinations at the end of semester, comprising questions of knowledge and understanding of the course content.

Attached Bibliography

  • Aguado E, Burt JE. 2014: Understanding Weather and Climate (7 Edition), Pearson.
  • Ahrens CD, Henson Ρ. 2018: Meteorology Today: An Introduction to Weather, Climate and the Environment 12th Edition, Cengage Learning.
  • Flocas A. 1997: Meteorology and Climatology courses. Ziti Editions, Thessaloniki (in Greek).
  • Sahsamanoglou Ch, Makrogiannis T. 1998: General Meteorology. Ziti Editions, Thessaloniki (in Greek).