Μετρικοί Χώροι και η Τοπολογία τους (MAY413)

Από Wiki Τμήματος Μαθηματικών

Πρότυπο:Course-UnderGraduate-Top

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAY413
Εξάμηνο 4
Τίτλος Μαθήματος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΟΠΟΛΟΓΙΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις, παρουσιάσεις και ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Γενικού Υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Η Τοπολογία είναι ένα ισχυρό εργαλείο έρευνας και έκφρασης σ’ όλους τους κλάδους της Μαθηματικής Επιστήμης. Τα τελευταία μάλιστα χρόνια η Τοπολογία χρησιμοποιείται όλο και περισσότερο στη δημιουργία μαθηματικών μοντέλων που εξυπηρετούν ερευνητικά εφαρμοσμένους κλάδους των Θετικών Επιστημών, όπως η Οικονομία, η Μετεωρολογία, τα Ασφαλιστικά Μαθηματικά, η Επιδημιολογία στην Ιατρική κ.τ.λ.


Η διδακτική προσέγγιση εδώ είναι να δοθεί αρχικά η θεωρία των Μετρικών Χώρων και στη συνέχεια, ως απλή αναφορά, η εισαγωγή στη Γενική Τοπολογία. Μια διεξοδική μελέτη των Μετρικών Χώρων, εκτός του ότι προετοιμάζει τον φοιτητή να δεχτεί ομαλά τις αφηρημένες δομές της Γενικής Τοπολογίας, τον βοηθάει να κατανοήσει καλύτερα τη δομή του ευκλείδειου χώρου n, που μελετά ταυτόχρονα στο Λογισμό των Συναρτήσεων Πολλών Μεταβλητών.
Αναπτύσσονται έννοιες, όπως η σύγκλιση, η συνέχεια, η πληρότητα, το ολικά φραγμένο, η συμπάγεια, η διαχωρισιμότητα και η συνεκτικότητα. Οι έννοιες αυτές και οι αποδείξεις των σχετικών συμπερασμάτων δίνονται με τέτοιο τρόπο ώστε, για τα σημεία που αυτό είναι εφικτό, να μπορούν να μεταφερθούν εύκολα και χωρίς μεγάλες αλλαγές στους Τοπολογικούς Χώρους.

Γενικές Ικανότητες
  • Ανάλυση και σύνθεση δεδομένων και πληροφοριών
  • Αυτόνομη εργασία
  • Ομαδική εργασία
  • Εργασία σε διεπιστημονικό περιβάλλον
  • Προαγωγή δημιουργικής και επαγωγικής σκέψης
  • Προαγωγή της αναλυτικής και συνθετικής σκέψης
  • Παραγωγή νέων ερευνητικών ιδεών

Περιεχόμενο Μαθήματος

Μετρικοί χώροι, ορισμός, παραδείγματα, βασικές ιδιότητες. Μετρικές σε διανυσματικούς χώρους που ορίζονται από νόρμες. Διάμετρος συνόλου, απόσταση συνόλων. Ακολουθίες σε μετρικούς χώρους, υπακολουθίες, σύγκλιση ακολουθιών. Συναρτήσεις μετρικών χώρων, συνέχεια συναρτήσεων, αρχή μεταφοράς συγκλινουσών ακολουθιών, ομοιόμορφη συνέχεια συναρτήσεων. Ανοιχτές μπάλες, κλειστές μπάλες, εσωτερικό, κλειστή θήκη και σύνορο συνόλου, σημεία συσσώρευσης συνόλου και παράγωγο σύνολο. Η τοπολογία ενός μετρικού χώρου, η έννοια του τοπολογικού χώρου. Βασικές (ή Cauchy) ακολουθίες, πλήρεις μετρικοί χώροι. Αρχή της συστολής (Θεώρημα Σταθερού σημείου του Banach). Ολικά φραγμένοι μετρικοί χώροι, συμπαγείς χώροι. Ισοδύναμες μορφές της συμπάγειας μετρικών χώρων. Ιδιότητες των συμπαγών χώρων. Διαχωρίσιμοι μετρικοί χώροι. Συνεκτικότητα σε μετρικούς χώρους, ιδιότητες των συνεκτικών συνόλων, συνεκτικές συνιστώσες.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Χρήση ειδικού λογισμικού (TEX, Mathenatica, κλπ) για την παρουσίαση εργασιών και ασκήσεων
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ5) 65
Αυτοτελής Μελέτη 100
Επίλυση Ασκήσεων - εργασίες 22.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή εξέταση στο τέλος του εξαμήνου σε θέματα της θεωρίας του μαθήματος, καθώς και σε ασκήσεις-προβλήματα σχετικά με τη θεωρία.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • K. W. Anderson and D. W. Hall, Sers, Sequences and Mappings, John Wiley and Sons, Inc. New York 1963.
  • V. Arkhangel’skii and V.I. Ponomarev, Fundamentals of General topology, D. Reidel Publishing Company, 1983.
  • G. Buskes and A. van Rooij, Topological Spaces, Springer-Verlag, New York, 1197.
  • D. C. J. Burgess, Analytical Topology, D. Van Nostrand Co. Ltd., London, 1966.
  • N. L. Carothers, Real Analysis, Cambridge University Press, 2000.
  • E. Copson, Metric Spaces, Cambridge University Press, 1968.
  • J. Diedonne, Foundations of Modern Analysis, Academic Press, New York, 1966.
  • J. Dugudji, Topology, Allyn and Bacon Inc., Boston, 1978.
  • W. Franz, General Topology, G. Harrap and Co. Ltd. London 1965.
  • J. R. Giles, Introduction to the Analysis of Metric Spaces, Cambridge University Press, 1989.
  • S.-T. Hu, Introduction to General Topology, Holden-Day Inc. San Francisco, 1966.
  • T. Husain, Topology and Maps, Plenum Press, New York, 1977.
  • K. D. Joshi, Introduction to General Topology, Wiley Eastern Limited, New Delhi, 1986.
  • Ι. Kaplansky, Set Theory and Metric Spaces, Allyn and Bacon Inc., Boston, 1975.
  • R. L. Kasriel, Undergraduate Topology, W. B. Saunders Co. Philadelphia, 1971.
  • J. L. Kelley, General Topology, D. Van Nostrand Co. Inc., Toronto 1965.
  • S. Lipschutz, Theory and Problems of General Topology, Schaum’s Outline Series, New York, 1965.
  • Mwndelson, Introduction to Topology, Prentice-Hall Inc. New Jersey, 1975.
  • M. G. Murdeshuar, General Topology, Wiley Eastern Limited, New Delhi, 1986.
  • M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, 1964.
  • Α. W. Schurle, Topics in Topology, North Holland, New York, 1979.
  • Β. Στάϊκος, Μαθήματα Μαθηματικής Αναλύσεως Μέρος Ι και Μέρος ΙΙ, Ιωάννινα, 1981.