Mathematical Statistics (ΣΕΕ1)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 12:57, 13 Ιουνίου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με '=== General === {| class="wikitable" |- ! School | School of Science |- ! Academic Unit | Department of Mathematics |- ! Level of Studies | Graduate |- ! Course Code | ΣΣΕ1 |- ! Semester | 1 |- ! Course Title | Mathematical Statistics |- ! Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |- ! Course Type | Special Background |- ! Prerequisite Courses | - |- ! Language of Instruction and Examinations | Greek |- ! Is the Course...')
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Graduate |
Course Code | ΣΣΕ1 |
Semester | 1 |
Course Title | Mathematical Statistics |
Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 7.5) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek |
Is the Course Offered to Erasmus Students | Yes (in English, reading Course) |
Course Website (URL) | - |
Learning Outcomes
Learning outcomes | The course aims to extend the knowledge which the students have obtained during their undergraduate studies on several themes of Mathematical Statistics and to present some special topics of Mathematical Statistics. |
---|---|
General Competences |
All the above will give to the stundetns the opportunity to work in an international multidisciplinary environment. |
Syllabus
Extensions of the following subjects: Unbiasdness, Sufficient, Minimal Sufficient, Completeness, Consistency, Theorem of: Rao-Blackwell, Lehmann-Scheffé, Basu. Maximum Likelihood Estimators: Properties-Asymptotic Properties. Decision Theory: minimax, Bayes estimators. Modified Likelihood, EM algorithm, Numerical methods of finding estimators. Confidence intervals: pivotal quantity, Asymptotic method etc. Delta Method- Asymptotic statistics.
Teaching and Learning Methods - Evaluation
Delivery | Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | Use of ICT in communication with students | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation | Final written exam in Greek (in case of Erasmus students in English). |
Attached Bibliography
Books in English
- Casella, G. and Berger, R.L. (2002). Statistical Inference. Duxbury Press; 2nd edition.
- Mood A. et al. (1974). Introduction to the theory of Statistics. McGraw-Hill.
- Roussas G. (1997). A course in Mathematical Statistics. Academic Press.
- Hogg, R and Craig, A. (1978). Introduction to Mathematical Statistics.
- Lehmann, E.L. and Casella, G. (1998). Theory of point estimation. Springer; 2nd edition.
- Bickel, P.J. and Doksum, K.A. (1977). Mathematical Statistics, Basic Ideas and Selected Topics, Vol. 1. Holden-Day.
- Rohatgi, V.K. (1976). An Introduction to Probability Theory and Mathematical Statistics. John Wiley and Sons, New York.
- Rao, C. R. (1973). Linear Statistical Inference and its Applications. Wiley: 2nd edition.
- Lehmann, E.L. and Romano, J.P. (2005). Testing statistical hypotheses. Springer; Third edition, New York.
- Van der Vaart (1998). Asymptotic Statistics. Cambridge University Press.
Books in Greek
- Τ. ΠΑΠΑΙΩΑΝΝΟΥ-Κ. ΦΕΡΕΝΤΙΝΟΥ: Μαθηματική Στατιστική Εκδόσεις Σταμούλη.
- Ηλιόπουλος, Γ. (2013). Βασικές Μέθοδοι Εκτίμησης Παραμέτρων. Εκδόσεις Σταμούλη; 2η έκδοση.