Κυρτή Ανάλυση (AN11)

Από Wiki Τμήματος Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΝ11
Εξάμηνο 2
Τίτλος Μαθήματος ΚΥΡΤΗ ΑΝΑΛΥΣΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Μάθημα Ειδίκευσης
Προαπαιτούμενα Μαθήματα Πραγματική Ανάλυση, Απειροστικός Λογισμός Ι και Απειροστικός Λογισμός ΙΙ
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Το μάθημα έχει ως στόχο να εισάγει τους φοιτητές σε ένα ευρύ φάσμα θεμάτων πάνω στην κυρτή ανάλυση μεταπτυχιακού επιπέδου. Η επιλογή της ύλης γίνεται από κλασσικά θέματα κυρτής ανάλυσης καθώς και από θέματα που βρίσκονται στο ενδιαφέρον της σύγχρονης έρευνας. Επιδιώκεται ο φοιτητής να αποκτήσει:
  • γνώση θεμάτων από μια ευρεία περιοχή της κυρτής ανάλυσης
  • δυνατότητα να ξεκινήσει έρευνα σε θέματα κυρτής ανάλυσης και
  • να έλθει σε επαφή με την βιβλιογραφία στα θέματα κυρτής ανάλυσης τα οποία διδάχτηκε.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Ομαδική εργασία
  • Προαγωγή ελεύθερης και δημιουργικής σκέψης
  • Προαγωγή αναλυτικής και συνθετικής και δημιουργικής σκέψης
  • Αναζήτηση πληροφοριών με την χρήση και των απαραίτητων τεχνολογιών
  • Απόκτηση ειδικών γνώσεων και καλλιέργεια ικανοτήτων σύγκρισης, εξαγωγής συμπερασμάτων και αξιολόγησης στο γνωστικό αντικείμενο.

Περιεχόμενο Μαθήματος

Εισαγωγικές έννοιες. Κυρτές συναρτήσεις και κυρτά σύνολα, κριτήρια κυρτότητας. Χώροι με νόρμα. Δυικοί χώροι και ο μετασχηματισμός Legendre. Θεώρημα του Καραθεοδωρή και εφαρμογές στη γεωμετρία. Θεωρήματα Radon και Helly. Το πρώτο Θεώρημα Minkowski και εφαρμογές στη θεωρία βελτιστοποίησης. Το φαινόμενο συγκέντρωσης μέτρου στη σφαίρα. Θεώρημα Dvoretzky και θεώρημα πηλίκου υποχώρου. Η ανισότητα Brunn-Minkowski και γενικεύσεις (Lp παραλλαγές και συναρτησιακές μορφές). Μικτοί όγκοι και ανισότητες τύπου Aleksandrov-Fenchel. Ισοπεριμετρικού τύπου ανισότητες (όπως κλασσική ισοπεριμετρική και Blaschke-Santalo) και η σχέση τους με ανισότητες τύπου Sobolev. Η ανισότητα Brascamp-Lieb και αντίστροφες ισοπεριμετρικές ανισότητες. Επιφανειακά μέτρα κυρτών υπερεπιφανειών. Το πρόβλημα ύπαρξης και μοναδικότητας του Minkowski και γενικεύσεις, εφαρμογές στη θεωρία των εξισώσεων Monge-Ampere. Κλασσικά ανοιχτά προβλήματα.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Διαλέξεις-παρουσιάσεις στην αίθουσα
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις-Παρουσιάσεις 45
Ασκήσεις/Εργασίες 52,5
Αυτόνομη μελέτη 90
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Οι φοιτητές επιλέγουν να αξιολογηθούν με έναν ή και με τους δύο από τους εξής τρόπους:
  1. Παρουσιάσεις στην τάξη-Γραπτές εργασίες-Ασκήσεις
  2. Γραπτή τελική εξέταση. Σε περίπτωση που κάποιος φοιτητής αξιολογηθεί και με τους δύο τρόπους, ως τελικός βαθμός υπολογίζεται το μέγιστο των δύο βαθμολογιών. Τα κριτήρια αξιολόγησης θα είναι προσβάσιμα στην ιστοσελίδα του Μαθήματος στην πλατφόρμα “E-Course” του Πανεπιστημίου Ιωαννίνων.

Συνιστώμενη Βιβλιογραφία

  • J. Bakelman, Convex Analysis And Nonlinear Geometric Elliptic Equations
  • R. J. Gardner, Geometric tomography. Second edition.
  • H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics.
  • Koldobsky, Fourier Analysis in Convex Geometry.
  • M. Ledoux, The Concentration of Measure Phenomenon.
  • V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces
  • R. Tyrel Rockafellar, Convex Analysis.
  • R. Schneider, Convex bodies: the Brunn-Minkowski theory. Second expanded edition.
  • R. Schneider and W. Weil, Stochastic and Integral Geometry.
  • C. Thompson, Minkowski Geometry.