Μαθηματική Στατιστική (ΣEE1)

Από Wiki Τμήματος Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΣEE1
Εξάμηνο 1
Τίτλος Μαθήματος MΑΘΗΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Μάθημα Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Σκοπός του μαθήματος είναι η εμβάθυνση σε γνώσεις της Μαθηματικής Στατιστικής που έχουν αποκτηθεί κατά τη διάρκεια των προπτυχιακών σπουδών, η επέκταση αυτών των εννοιών και η παρουσίαση εξειδικευμένων γνώσεων της Μαθηματικής Στατιστικής.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Ομαδική εργασία σε κάποιες περιπτώσεις
  • Λήψη αποφάσεων
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών.

Περιεχόμενο Μαθήματος

(Eπεκτάσεις και συμπληρώσεις στα επόμενα θέματα). Xώρος Πιθανότητας - Tυχαία Mεταβλητή - Kατανομή - Eιδικά μοντέλα κατανομών Xαρακτηριστικά κατανομών - Aλλαγή μεταβλητών- Σύγκλιση ακολουθιών τ.μ. - Aνισότητες-Διατεταγμένα δείγματα. Oικογένειες κατανομών (εκθετική κ.λ.π.) Aμεροληψία - Eπάρκεια - Πληρότητα - Συνέπεια - Θεώρημα Rao-Blackwell-Lehmann-Scheffé Θεώρημα για AOEΔ εκτιμητές - Θεώρημα Basu EMΠ - ασυμπτωτικές ιδιότητες. Στοιχεία θεωρίας αποφάσεων - minimax - Eκτιμητές - Bayes εκτιμητές κ.λ.π. Διαστήματα εμπιστοσύνης - Mέθοδος αντιστρεπτής ποσότητας - Γενική μέθοδος - Aσυμπτωματικά Δ.E. - Διαστήματα ίσων ούρων - Διαστήματα Bayes - Aμερόλητα Δ.E. - Bέλτιστα σταθερού μήκους κ.λ.π. Στατιστική Θεωρία πληροφοριών - Έννοια πληροφορίας - μέτρα πληροφορίας τύπου Fisher - τύπου divergence, ιδιότητες και πιθανές εφαρμογές. Mαθηματική Στατιστική σε cencoring και truncated δεδομένα. Έλεγχος Στατιστικών Yποθέσεων - Oμοιόμορφα ισχυρότατα τεστ - Θεωρία Neyman - Pearson - Oικογένειες με μονότονο λόγο πιθανοφάνειας - Eνοχλητικοί παράμετροι - Aμερόληπτα τεστ - Θεωρία λόγου πιθανοφανειών - Bayesian τεστ και minimax τεστ.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση ασκήσεων-εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας. Κατά τη διάρκεια του εξαμήνου δίνονται υποχρεωτικές, συνήθως ατομικές, εργασίες.

Συνιστώμενη Βιβλιογραφία

  • Casella, G. and Berger, R.L. (2002). Statistical Inference. Duxbury Press; 2nd edition.
  • Mood A. et al. (1974). Introduction to the theory of Statistics. McGraw-Hill.
  • Roussas G. (1997). A course in Mathematical Statistics. Academic Press.
  • Hogg, R and Craig, A. (1978). Introduction to Mathematical Statistics.
  • Lehmann, E.L. and Casella, G. (1998). Theory of point estimation. Springer; 2nd edition
  • Τ. ΠΑΠΑΙΩΑΝΝΟΥ-Κ. ΦΕΡΕΝΤΙΝΟΥ: Μαθηματική Στατιστική Εκδόσεις Σταμούλη.
  • Ηλιόπουλος, Γ. (2013). Βασικές Μέθοδοι Εκτίμησης Παραμέτρων. Εκδόσεις Σταμούλη; 2η έκδοση
  • Bickel, P.J. and Doksum, K.A. (1977). Mathematical Statistics, Basic Ideas and Selected Topics, Vol. 1. Holden-Day.
  • Rohatgi, V.K. (1976). An Introduction to Probability Theory and Mathematical Statistics. John Wiley and Sons, New York.
  • Rao, C. R. (1973). Linear Statistical Inference and its Applications. Wiley: 2nd edition.
  • Lehmann, E.L. and Romano, J.P. (2005). Testing statistical hypotheses. Springer; Third edition, New York.
  • Van der Vaart (1998). Asymptotic Statistics. Cambridge University Press.