Stochastic Processes (MAE532)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 23:53, 16 Ιανουαρίου 2025 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (→‎Teaching and Learning Methods - Evaluation)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΕ532

Semester

5

Course Title

Stochastic Processes

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses It is desirable to have elementary knowledge of probability theory.
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English, reading Course)

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

A stochastic process is a collection of random variables which describe the behavior of a system that evolves randomly in time. In this course you will gain the theoretical knowledge and practical skills necessary for the analysis of stochastic systems, i.e., systems that evolving over time under probabilistic laws. Stochastic modelling is an interesting and challenging area in applied probability that is widely used in physics, biology, engineering, as well as economics, finance, and social sciences. Our aim in this course is to provide an introduction in the basic notions of stochastic processes at an undergraduate level, with particular emphasis on the Markovian processes in discrete and in continuous time with discrete state spaces.

The course aims to enable students to:

  • Become familiar with the general theory and techniques related to Discrete Time Markov Chains (DTMC), and Continuous Time Markov Chains (CTMC).
  • Become familiar with the concept of stochastic modelling.

At the end of the course, the student will be able to:

  • To develop aptitude in analyzing random walks.
  • To have insight into Markov chains, Markov processes and birth-and-death processes, and to be able to determine their stationary distribution.
  • To have a thorough understanding of the properties of the Poisson process.
  • To get a feeling for the application of stochastic processes in the analysis and optimization of all kinds of systems and phenomena in industry and society.
   • To be able to treat a modeling problem of moderate size in the area of stochastics.
   • Derive the theoretical properties of Markovian models and carry out corresponding calculations.
General Competences
  • Working independently
  • Decision-making
  • Production of free, creative and inductive thinking
  • Criticism and self-criticism

Syllabus

Introduction to stochastic processes: Definition, examples, Random walks: Constrained random walks: gambling problems, Reflected random walks, Discrete Time Markov Chains (DTMC): Introduction, Definitions, examples, Transient behaviour, First passage times, First step analysis, Classification of states, visits to a fixed state, limiting behaviour and applications, Continuous Time Markov Chains (CTMC): Poisson process and applications, Birth-death processes and applications.

Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology -

Use of ICT in communication with students

Teaching Methods
Activity Semester Workload
Lectures 39
Working independently 78
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation

Final exams (100%) including Theory and Exercises

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:

  • V.G. Kulkarni. Introduction to Modeling and Analysis of Stochastic Systems Second Edition, Springer, 2011 (parts from Ch. 1-4).
  • M. Pinsky, S. Karlin. An Introduction to Stochastic Modeling, Fourth Edition, Academic Press, 2011. (parts from Ch. 3-6).
  • N. Privault. Understanding Markov Chains Examples and Applications. Springer, 2018.
  • Ross, S.. Introduction to Probability Models, Academic Press, New York, 12th Ed. 2019.