Topics in Operations Research (MAE732A): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
μ (Ο Mathwikiadmin μετακίνησε τη σελίδα Topics in Operations Research (MAE732) στην Topics in Operations Research (MAE732A) χωρίς να αφήσει ανακατεύθυνση)
(Καμία διαφορά)

Αναθεώρηση της 18:50, 27 Αυγούστου 2022

Undergraduate Courses Outlines - Department of Mathematics

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

MAE732

Semester

7

Course Title

Topics in Operations Research

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

The course learning outcomes are: the introduction of the students to integer programming formulations, the introduction of the students to the dynamic programming methodology, the introduction of the students to techniques and tools for decision-making under uncertainty. Upon successful completion of the course the student will be able to:

  • model and solve integer programming problems and understand their differences with the linear programming problems.
  • understand the basic principles of dynamic programming
  • construct simple recursive dynamic programming equations
  • solve known optimization problems using dynamic programming
  • describe and handle decision making problems under uncertainty.  
General Competences
  • Working independently
  • Decision-making
  • Adapting to new situations
  • Production of free, creative and inductive thinking
  • Synthesis of data and information, with the use of the necessary technology

Syllabus

Integer linear programming (integer and mixed integer problems formulation, integer programming algorithms). Dynamic programming (Bellman principle of optimality, finite and infinite horizon problems, Applications on: Routing problems, Equipment-Replacement Problem, inventory problems, etc). Decision analysis (General characteristics of decision problems, decisions under uncertainty, decision trees, risk analysis).

Teaching and Learning Methods - Evaluation

Delivery

Face-to-face

Use of Information and Communications Technology

Lindo/Lingo Software, Email, class web

Teaching Methods
Activity Semester Workload
Lectures 39
Independent study 78
Fieldwork (3-4 set of homework) 33
Course total 150
Student Performance Evaluation

LANGUAGE OF EVALUATION: Greek
METHODS OF EVALUATION: Final exam (100%)

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:

  • Bellman, R.E.. Dynamic Programming, Princeton University Press, 1957, Princeton, NJ. Republished 2003
  • Bertsekas D. P. Dynamic Programming and Optimal Control, Vols. I and II, Athena Scientific, 1995, (3 Edition Vol. I, 2005, 4th Edition Vol. II, 2012),
  • BERTSIMAS D. and J. N. TSITSIKLIS Introduction to Linear Optimization, Athena Scientific 1997
  • HADLEY G. Linear Programming, Addison-Wesley Publishing Company, INC, 1965
  • HILLIER F. S. and G. J. Lieberman. Introduction Operations research. The McGraw-Hill Companies, 2001
  • WINSTON W. L., Operations research (Applications and algorithms). Duxbury Press (International Thomson Publishing) 1994.
  • [Περιοδικό / Journal] Mathematical Programming Journal, Series A and Series B
  • [Περιοδικό / Journal] INFORMS Transactions on Education (ITE)