Αριθμητική Γραμμική Άλγεβρα (ΜΑΕ685): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Γραμμή 79: Γραμμή 79:
|-
|-
! Τρόπος Παράδοσης
! Τρόπος Παράδοσης
| Στην τάξη
| Πρόσωπο με πρόσωπο.
|-
|-
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
|
|
* Xρήση ταμπλέτας για την παράδοση διδασκαλίας.  Οι σημειώσεις από την τάξη γίνονται διαθέσιμες σε μορφή pdf στο ecourse.
* Παροχή υλικού μελέτης μέσω του ecourse.
* Παροχή πρότυπων λύσεων κάποιων ασκήσεων σε μορφή podcast.
* Επικοινωνία με τους φοιτητές χρησιμοποιώντας  e-mail, και τις πλατφόρμες ecourse και MTeams.
* Εργαστήριο προγραμματισμού με αντικείμενο την υλοποίηση αλγορίθμων σε ηλεκτρονικό υπολογιστή (σε Octave ή Python).
|-
|-
! Οργάνωση Διδασκαλίας
! Οργάνωση Διδασκαλίας

Αναθεώρηση της 18:03, 28 Σεπτεμβρίου 2022

Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE685
Εξάμηνο 6
Τίτλος Μαθήματος ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδικού Υποβάθρου. Ανάπτυξης δεξιοτήτων.
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
  1. περιγράφουν και να εφαρμόζουν αριθμητικές μεθόδους από μια ποικιλία προβλημάτων της αριθμητικής γραμμικής άλγεβρας.
  2. αναγνωρίζουν τους περιορισμούς που θέτει η αριθμητική πεπερασμένης ακρίβειας κατά τους υπολογισμούς, και να εξηγούν τη σημασία της ευστάθειας των αριθμητικών αλγορίθμων.
  3. αξιολογούν αριθμητικές μεθόδους ως προς την ακρίβειά τους, την αποδοτικότητά τους, και τη δυνατότητα εφαρμογής τους.
  4. υλοποιούν σε Octave ἠ Python αριθμητικούς αλγορίθμους και να εφαρμόζουν κατάλληλα κριτήρια για τον τερματισμό ενός επαναληπτικού αλγόριθμου.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.
  • Προσαρμογή σε νέες καταστάσεις.
  • Άσκηση κριτικής και αυτοκριτικής.
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.
  • Προαγωγή της αναλυτικής και συνθετικής σκέψης.
  • Λήψη αποφάσεων.
  • Αυτόνομη εργασία.

Περιεχόμενο Μαθήματος

  • Στοιχεία από τη θεωρία Πινάκων. Ανάλυση Ιδιαζουσών Τιμών (SVD). Ευαισθησία των γραμμικών συστημάτων. Δείκτης κατάστασης πίνακα και ανάλυση διαταραχών γραμμικών συστημάτων.
  • Το γραμμικό πρόβλημα ελαχίστων τετραγώνων και η ανάλυση QR. Μετασχηματισμοί Householder.
  • Άμεσες Μέθοδοι (Ανάλυση LU, Ανάλυση Cholesky).
  • Επαναληπτικές μέθοδοι (Jacobi, Gauss-Seidel, SOR, μέθοδος βέλτιστης κλίσεως, μέθοδος συζυγών κλίσεων.
  • Μέθοδοι εύρεσης ιδιοτιμών και ιδιοδιανυσμάτων.
  • Εφαρμογές (o αλγόριθμος αναζήτησης PageRank της Google, επεξεργασίας ψηφιακών εικόνων, κ.λπ.)

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
  • Xρήση ταμπλέτας για την παράδοση διδασκαλίας. Οι σημειώσεις από την τάξη γίνονται διαθέσιμες σε μορφή pdf στο ecourse.
  • Παροχή υλικού μελέτης μέσω του ecourse.
  • Παροχή πρότυπων λύσεων κάποιων ασκήσεων σε μορφή podcast.
  • Επικοινωνία με τους φοιτητές χρησιμοποιώντας e-mail, και τις πλατφόρμες ecourse και MTeams.
  • Εργαστήριο προγραμματισμού με αντικείμενο την υλοποίηση αλγορίθμων σε ηλεκτρονικό υπολογιστή (σε Octave ή Python).
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή εξέταση

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • “Αριθμητική Γραμμική Άλγεβρα”, Β. Δουγαλής, Δ. Νούτσος, & Α. Χατζηδήμος, Τυπογραφείο Πανεπιστημίου Ιωαννίνων.
  • “Numerical Linear Algebra”, L. Trefethen, & D. Bau, SIAM, 1997.
  • “Matrix Computations”, G. Golub, C. Van Loan, 3rd edition, Johns Hopkins Univ. Press 1996.
  • “Iterative Methods for Sparse Linear Systems”, Y. Saad, PWS Publishing, 1996.
  • “Linear Algebra and Learning from Data”, G. Strang, Wellesley-Cambridge Press, 2019.
  • “Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control”, S. Brunton, & J. Kutz, Cambridge: Cambridge University Press, 2019. doi:10.1017/9781108380690.