Αριθμητική Επίλυση Συνήθων Διαφορικών Εξισώσεων (ΜΑΕ744): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(→Γενικά) |
|||
Γραμμή 47: | Γραμμή 47: | ||
|- | |- | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους | | Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να: | ||
# περιγράφουν τα βασικά χαρακτηριστικά των μονοβηματικών και πολυβηματικών μεθόδων και να αναγνωρίζουν τις μεταξύ τους διαφορές. | |||
# εφαρμόζουν μια ποικιλία τεχνικών για την κατασκευή μονοβηματικών και πολυβηματικών αριθμητικών μεθόδων για τη λύση Σ.Δ.Ε. | |||
# να εφαρμόζουν θεωρητικές τεχνικές της αριθμητικής ανάλυσης και να αποδεικνύουν συνέπεια, ευστάθεια, και σύγκλιση των μεθόδων. | |||
# να γνωρίζουν για βασικές μεθόδους τη βέλτιστη τάξη ακρίβειάς τους καθώς και τους περιορισμούς που μπορεί να απαιτούνται στις παραμέτρους διακριτοποίησης με στόχο την εξασφάλιση της ευστάθειάς τους. | |||
# να υλοποιούν, χρησιμοποιώντας ελεύθερο λογισμικό (π.χ. Python, Octave), άμεσες και πεπλεγμένες αριθμητικές μεθόδους για την λύση Σ.Δ.Ε. και να μπορούν να υπολογίσουν την πειραματική τάξη σύγκλισής τους. | |||
# να γράφουν κώδικα σε Python ή Octave για την αριθμητική προσέγγιση της λύσης μαθηματικών μοντέλων Σ.Δ.Ε. που προέρχονται από διάφορες επιστημονικές περιοχές. | |||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες | ||
| | | | ||
* Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών. | |||
* Προσαρμογή σε νέες καταστάσεις. | |||
* Λήψη αποφάσεων. | |||
* Ομαδική εργασία. | |||
* Εργασία σε διεπιστημονικό περιβάλλον. | |||
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης. | |||
* Προαγωγή της αναλυτικής και συνθετικής σκέψης. | |||
|} | |} | ||
Αναθεώρηση της 18:11, 28 Σεπτεμβρίου 2022
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE744 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΣΥΝΗΘΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού υποβάθρου, ανάπτυξης δεξιοτήτων. |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Εξισώσεις Διαφορών. Προβλήματα Αρχικών Τιμών. Μέθοδοι ενός Βήματος (Euler, Taylor, Runge Kutta). Σφάλματα Αποκοπής και Στρογγύλευσης. Μέθοδοι Πολλών Βημάτων (Adams - Bashforth, Adams - Moulton, Predictor - Corrector). Σύγκλιση, Ευστάθεια, Συμβατότητα, Τάξη μεθόδων. Δύσκαμπτα Συστήματα Σ.Δ.Ε. Προβλήματα Συνοριακών Τιμών. Μέθοδοι Βολής, Προσδιοριστέων Συντελεστών, Πεπερασμένων Διαφορών, Προβλήματα Ιδιοτιμών.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση του εργαστηρίου Μηχανικής | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- “Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations”, E. Hairer, & C. Lubich, Springer, 2010.
- “Numerical Methods for Ordinary Differential Equations: Initial Value Problems”, D.F. Griffiths, & D. J. Higham, Springer, 2010.