Εισαγωγή στην Αριθμητική Ανάλυση (ΜΑΥ341): Διαφορά μεταξύ των αναθεωρήσεων
Γραμμή 47: | Γραμμή 47: | ||
|- | |- | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση: | | Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση να: | ||
# αναγνωρίζουν βασικές αριθμητικές μεθόδους από μια ποικιλία μαθηματικών προβλημάτων και τις εφαρμόζουν για την επίλυση πραγματικών προβλημάτων. | |||
# εφαρμόζουν μια ποικιλία θεωρητικών τεχνικών για να μελετούν και να εκτιμούν τα σφάλματα αριθμητικών μεθόδων από μια σειρά μαθηματικών περιοχών. | |||
# αναγνωρίζουν τους περιορισμούς που θέτει η αριθμητική πεπερασμένης ακρίβειας κατά τους υπολογισμούς, και να κατανοούν την έννοια της ευστάθειας των αριθμητικών μεθόδων. | |||
# αξιολογούν την απόδοση αριθμητικών μεθόδων ως προς την ακρίβειά τους και τη δυνατότητα εφαρμογής τους. | |||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες | ||
| | | | ||
* Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών | * Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών. | ||
* Προσαρμογή σε νέες καταστάσεις | * Προσαρμογή σε νέες καταστάσεις. | ||
* | * Αυτόνομη εργασία. | ||
* Προαγωγή της αναλυτικής και συνθετικής σκέψης. | |||
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης. | * Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης. | ||
|} | |} |
Αναθεώρηση της 18:52, 28 Σεπτεμβρίου 2022
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY341 |
Εξάμηνο | 3 |
Τίτλος Μαθήματος | ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 4, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Γενικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Θεωρία Σφαλμάτων. Αριθμητική επίλυση μη Γραμμικών Εξισώσεων: Επαναληπτικές μέθοδοι, η μέθοδος του Νεύτωνα, η μέθοδος της Τέμνουσας. Αριθμητική επίλυση Γραμμικών Συστημάτων: Άμεσες μέθοδοι (Απαλοιφή Gauss, LU παραγοντοποίηση), Επαναληπτικές μέθοδοι (Jacobi, Gauss-Seidel). Πολυωνυμική Παρεμβολή: Η μέθοδος Lagrange, η μέθοδος Διαιρεμένων Διαφορών του Νεύτωνα. Αριθμητική Ολοκλήρωση: Απλοί και γενικευμένοι τύποι Αριθμητικής ολοκλήρωσης, Κανόνας του Τραπεζίου, Κανόνας του Simpson, Σφάλματα κατά την Αριθμητική Ολοκλήρωση.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- “An Introduction to Numerical Analysis”, E. Süli, and D. Mayers, Cambridge University Press, Cambridge, 2003.