Θέματα Συναρτήσεων Μίας Μεταβλητής (MAE515): Διαφορά μεταξύ των αναθεωρήσεων
(Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE814 |- ! Εξάμηνο | 8 |- ! Τίτλος Μαθήματος | ΘΕΜ...') |
μ (Αντικατάσταση κειμένου - «το Σύστημα Διαχείρισης Μάθησης» σε «την Πλατφόρμα Ασύγχρονης Εκπαίδευσης») |
||
Γραμμή 39: | Γραμμή 39: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Αναθεώρηση της 22:19, 29 Σεπτεμβρίου 2022
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE814 |
Εξάμηνο | 8 |
Τίτλος Μαθήματος | ΘΕΜΑΤΑ ΠΡΑΓΜΑΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Οι στόχοι του μαθήματος είναι η απόκτηση ειδικών γνώσεων στην θεωρία πραγματικών συναρτήσεων. |
---|---|
Γενικές Ικανότητες |
Το μάθημα αποσκοπεί στην απόκτηση της ικανότητας από τον προπτυχιακό φοιτητή στην ανάλυση και σύνθεση βασικών γνώσεων της θεωρίας των πραγματικών συναρτήσεων. |
Περιεχόμενο Μαθήματος
Μονότονες συναρτήσεις-συνέχεια, συναρτήσεις φραγμένης κύμανσης,Fσ και Gδ σύνολα, σύνολα μηδενικού μέτρου, θεώρημα Lebesgue( κάθε μονότονη συνάρτηση διαφορίζεται σχεδόν παντού), Darboux συνεχείς συναρτήσεις-ορισμοί, ιδιότητες, ισοδύναμοι χαρακτηρισμοί, κριτήρια, Ημισυνεχείς συναρτήσεις. Διαφορισιμότητα αόριστου ολοκληρώματος Riemann ολοκληρώσιμης συνάρτησης, κλάσεις του Baire, Borel μετρήσιμες συναρτήσεις, αναλυτικά σύνολα-ορισμοί, ισοδύναμοι χαρακτηρισμοί, σύνδεση με Borel σύνολα-σχετική θεωρία, ολοκλήρωμα Lebesgue, ολοκλήρωμα Stieltjes.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Διαλέξεις-παρουσιάσεις στην αίθουσα. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος: