Θεωρία Προσεγγίσεως (ΑΑ2): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
μ (Αντικατάσταση κειμένου - «Σύστημα Διαχείρισης Μάθησης» σε «Πλατφόρμα Ασύγχρονης Εκπαίδευσης») |
(→Γενικά) |
||
| Γραμμή 39: | Γραμμή 39: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Αναθεώρηση της 23:07, 29 Σεπτεμβρίου 2022
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Μεταπτυχιακό |
| Κωδικός Μαθήματος | ΑΑ2 |
| Εξάμηνο | 1 |
| Τίτλος Μαθήματος | ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΕΩΣ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
| Τύπος Μαθήματος | Ειδικού υποβάθρου |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Έπειτα από επιτυχή συμμετοχή στο μάθημα οι φοιτητές αναμένεται να:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Γενική θεωρία ύπαρξης και μοναδικότητας της προσέγγισης.
- Ομοιόμορφη πολυωνυμική προσέγγιση: Θεωρήματα Weierstrass, Bernstein, Jackson, προσέγγιση συνεχών συναρτήσεων, προσέγγιση διακριτών συναρτήσεων, αλγόριθμος Remez.
- Πολυωνυμική προσέγγιση ελαχίστων τετραγώνων: Σύστημα κανονικών εξισώσεων, Ορθογώνια πολυώνυμα, προσέγγιση συνεχών συναρτήσεων, προσέγγιση διακριτών συναρτήσεων, συσχέτιση με ομοιόμορφη προσέγγιση.
- Πολυωνυμική προσέγγιση πρώτης δύναμης: Χαρακτηρισμός, προσέγγιση συνεχών συναρτήσεων, προσέγγιση διακριτών συναρτήσεων.
- Ρητή προσέγγιση: Χαρακτηρισμός, συσχέτιση με ομοιόμορφη προσέγγιση, Αλγόριθμος Remaz.
- Ρητή Παρεμβολή.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Στην τάξη | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γλώσσα Αξιολόγησης: Ελληνική. Μέθοδος Αξιολόγησης: Γραπτή εξέταση. |
Συνιστώμενη Βιβλιογραφία
- Theodor J. Rivlin: An Introduction to the Approximation of Functions. Dover Publications Inc. New York, 1969.