Αρμονική Ανάλυση (MAE718): Διαφορά μεταξύ των αναθεωρήσεων
(→Γενικά) |
|||
Γραμμή 54: | Γραμμή 54: | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
Τριγωνομετρικά πολυώνυμα, μερικά αθροίσματα σειράς Fourier μίας συνάρτησης | Τριγωνομετρικά πολυώνυμα, μερικά αθροίσματα σειράς Fourier μίας συνάρτησης, ανισότητα Bessel, Λήμμα Riemann-Lebesgue, ταυτότητα του Parseval για Riemann ολοκληρώσιμες συναρτήσεις, μιγαδικές Riemann ολοκληρώσιμες συναρτήσεις ορισμένες σε διάστημα, συντελεστές και σειρά Fourier, πυρήνας του Dirichlet, | ||
κριτήρια για ομοιόμορφη σύγκλιση της σειράς Fourier, συνέλιξη συναρτήσεων και πυρήνες προσέγγισης της μονάδος, ο πυρήνας του Fejer, θεώρημα Fejer, πυρήνας του Poisson, Abel αθροισιμότητα σειράς Fourier, εφαρμογές. | κριτήρια για ομοιόμορφη σύγκλιση της σειράς Fourier, συνέλιξη συναρτήσεων και πυρήνες προσέγγισης της μονάδος, ο πυρήνας του Fejer, θεώρημα Fejer, πυρήνας του Poisson, Abel αθροισιμότητα σειράς Fourier, εφαρμογές. | ||
Αναθεώρηση της 15:47, 6 Οκτωβρίου 2022
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE718 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | ΑΡΜΟΝΙΚΗ ΑΝΑΛΥΣΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Οι στόχος του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή στις θεωρία των σειρών Fourier. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στην απόκτηση της ικανότητας από τον μεταπτυχιακό φοιτητή στην ανάλυση και σύνθεση βασικών γνώσεων της Αρμονικής Ανάλυσης. |
Περιεχόμενο Μαθήματος
Τριγωνομετρικά πολυώνυμα, μερικά αθροίσματα σειράς Fourier μίας συνάρτησης, ανισότητα Bessel, Λήμμα Riemann-Lebesgue, ταυτότητα του Parseval για Riemann ολοκληρώσιμες συναρτήσεις, μιγαδικές Riemann ολοκληρώσιμες συναρτήσεις ορισμένες σε διάστημα, συντελεστές και σειρά Fourier, πυρήνας του Dirichlet, κριτήρια για ομοιόμορφη σύγκλιση της σειράς Fourier, συνέλιξη συναρτήσεων και πυρήνες προσέγγισης της μονάδος, ο πυρήνας του Fejer, θεώρημα Fejer, πυρήνας του Poisson, Abel αθροισιμότητα σειράς Fourier, εφαρμογές.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Yitzhak Katznelson, An Introduction to Harmonic Analysis, Dover Edition.
- Elias M. Stein, Rami Shakarchi, Fourier Analysis, An Introduction, Princeton University Press.