Θεωρία Δακτυλίων (MAE725): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
* [[xxx|English version]]
* [[Ring Theory (MAE725)|English version]]
* [[Περιγράμματα Προπτυχιακών Μαθημάτων]]
* [[Περιγράμματα Προπτυχιακών Μαθημάτων]]
* [https://math.uoi.gr Τμήμα Μαθηματικών]
* [https://math.uoi.gr Τμήμα Μαθηματικών]

Αναθεώρηση της 10:08, 25 Νοεμβρίου 2022

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE725
Εξάμηνο 7
Τίτλος Μαθήματος ΘΕΩΡΙΑ ΔΑΚΤΥΛΙΩΝ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδικού Υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στα κυριότερα εργαλεία και τις μεθόδους της θεωρίας των μη-μεταθετικών δακτυλίων, όπου με τον όρο μη-μεταθετικός δακτύλιος εννοείται ένας προσεταιριστικός δακτύλιος με μονάδα ο οποίος δεν είναι απαραίτητα μεταθετικός. Ο κεντρικός στόχος του μαθήματος είναι η παρουσίαση της βασικής θεωρίας δακτυλίων η οποία οδηγεί στην απόδειξη του θεμελιώδους Θεωρήματος των Wedderburn-Artin περί της δομής των ημιαπλών δακτυλίων και του επίσης θεμελιώδους Θεώρηματος Πυκνότητας του Jacobson περί της δομής των πρωταρχικών δακτυλίων. Βασικό στοιχείο στην μελέτη ενός δακτυλίου αποτελεί η αλληλεπίδραση της δομής του δακτυλίου με την δομή των (αριστερών ή δεξιών) ιδεωδών του καθώς και των προτύπων (αναπαραστάσεων) του. Στο μάθημα θα δοθεί πληθώρα παραδειγμάτων και επιπρόσθετα θα δοθούν εφαρμογές σε διάφορες περιοχές των Μαθηματικών και ειδικότερα της Άλγεβρας. Στο τέλος τού μαθήματος περιμένουμε από τον φοιτητή να έχει κατανοήσει τους ορισμούς και τα βασικά θεωρήματα τα οποία αναλύονται στο μάθημα, να έχει κατανοήσει πως αυτά εφαρμόζονται σε διακεκριμένα παραδείγματα, να είναι σε θέση να τα εφαρμόζει για την εξαγωγή νέων στοιχειωδών συμπερασμάτων, και τέλος να μπορεί να εκτελεί ορισμένους (όχι τόσο προφανείς) υπολογισμούς.
Γενικές Ικανότητες

Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος να αποκτήσει την ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Θεωρίας Δακτυλίων, η οποία αποτελεί ένα σημαντικό μέρος της σύγχρονης Άλγεβρας. Ερχόμενος ο πτυχιούχος για πρώτη φορά σε επαφή με έννοιες της Θεωρίας Δακτυλίων, προάγεται η δημιουργική, αναλυτική και επαγωγική σκέψη του, και η ικανότητά του να εφαρμόζει αφηρημένες γνώσεις σε διάφορα πεδία.

Περιεχόμενο Μαθήματος

Δακτύλιοι - Ομομορφισμοί - Ιδεώδη - Δακτύλιοι Πηλίκα - Μόδιοι - Νέοι Δακτύλιοι από παλαιούς - Άλγεβρες - Ομαδοάλγεβρες - Μόδιοι Ομαδοαλγεβρών - Ενδομορφισμοί Μοδίων - ο Διμεταθέτης- Απλοί πιστοί Μόδιοι και Πρωταρχικοί Δακτύλιοι - Δακτύλιοι Artin - Απλές 'Aλγεβρες Πεπερασμένης Διάστασης Υπεράνω Αλγεβρικών Κλειστών Σωμάτων - Μόδιοι Artin και Δακτύλιοι - Μόδιοι Noether και Δακτύλιοι - Ριζικό Δακτυλίου.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Εβδομαδιαίες εργασίες, παρουσιάσεις στον πίνακα, και γραπτή εξέταση στο τέλος του εξαμήνου στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • Nathan Jacobson: "Basic Algebra I & II", W. H. Freeman and Company,  (1985 & 1989). 
  • I.N. Herstein: "Non-commutative Rings", AMS, Carus Mathematical Monographs 85, (1971).
  • Luis Rowen: "Ring Theory (student edition)", Academic Press, Second Edition, (1991).
  • T.Y. Lam: "A First Course in Noncommutative Rings", GTM 131, Springer, (2001).
  • P. M. Cohn: "Introduction to Ring Theory", Springer (2000).
  • Y. Drozd and V. Kirichenko: "Finite Dimensional Algebras", Springer (1994).