Numerical Analysis (MAE642): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με '=== General === {| class="wikitable" |- ! School | School of Science |- ! Academic Unit | Department of Mathematics |- ! Level of Studies | Undergraduate |- ! Course Code | ΜΑΕ642 |- ! Semester | 6 |- ! Course Title | Numerical Analysis |- ! Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 6) |- ! Course Type | Special Background |- ! Prerequisite Courses | - |- ! Language of Instruction and Examinations | Greek |- ! Is the Course...')
 
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
[[Undergraduate Courses Outlines]] - [https://math.uoi.gr  Department of Mathematics]
=== General ===
=== General ===
{| class="wikitable"
{| class="wikitable"

Αναθεώρηση της 00:23, 2 Ιουλίου 2022

Undergraduate Courses Outlines - Department of Mathematics

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΕ642

Semester

6

Course Title

Numerical Analysis

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) -

Learning Outcomes

Learning outcomes

After successful end of this course, students will be able to:

  • understand the basic theory of orthogonal polynomials,
  • be aware and apply the taught methods of numerical integration
  • be aware and apply the taught methods for numerical solution of equations and nonlinear systems,
  • implement the above methods with programs on the computer.
General Competences
  • Search for, analysis and synthesis of data and information, with the use of the necessary technology
  • Adapting to new situations
  • Criticism and self-criticism
  • Production of free, creative and inductive thinking

Syllabus

Sets of Orthogonal Polynomials: Legendre, Chebyshev. Numerical Integration: Newton-Cotes, Chebyshev, Gauss-Legendre, Gauss-Chebyshev. Numerical Solution of Equations: Newton's Method, Secant Method, Aitken-Steffensen Methods. Numerical Solution of Nonlinear Systems: Newton's Method.

Teaching and Learning Methods - Evaluation

Delivery

In the class

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures 39
Study and analysis of bibliografy 104
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation

Written examination

Attached Bibliography

  • "Introduction to Numerical Analysis". Akrivis G.D., Dougalis B.A, Crete University Press, 4th Edition, 2010.