Στατιστική Συμπερασματολογία (ΜΑΕ633): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 2: | Γραμμή 2: | ||
* [[Περιγράμματα Προπτυχιακών Μαθημάτων]] | * [[Περιγράμματα Προπτυχιακών Μαθημάτων]] | ||
* [https://math.uoi.gr Τμήμα Μαθηματικών] | * [https://math.uoi.gr Τμήμα Μαθηματικών] | ||
* [https://survey.math.uoi.gr/index.php?r=survey/index&sid=289659&lang=el Τροποποίηση Περιγράμματος] (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος) | |||
=== Γενικά === | === Γενικά === |
Αναθεώρηση της 22:45, 25 Νοεμβρίου 2022
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τμήμα Μαθηματικών
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE633 |
Εξάμηνο | 6 |
Τίτλος Μαθήματος | ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στόχος του µαθήµατος είναι η παρουσίαση και µελέτη τεχνικών και µεθόδων παραµετρικής στατιστικής συµπερασµατολογίας και ειδικότερα η εκτίµηση παραµέτρων σε σηµείο, σε διάστηµα και η ανάπτυξη της θεωρίας του ελέγχου στατιστικών υποθέσεων. Στόχος του μαθήματος αυτού, είναι ο φοιτητής να εντρυφήσει στις παραπάνω θεμελιώδεις έννοιες και μεθόδους της στατιστικής και να είναι σε θέση να εξάγει στατιστικά συμπεράσματα στη βάση πειραματικών δεδομένων, αξιοποιώντας τις μεθόδους αυτές. Με την ολοκλήρωση του μαθήματος οι φοιτητές θα έχουν αποκτήσει το θεωρητικό υπόβαθρο στο οποίο οικοδομούνται όλες οι μεθοδολογίες και τεχνικές της στατιστικής. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Eκτιµητική: Aµερόληπτοι, επαρκείς και συνεπείς εκτιµητές. Aµερόληπτοι εκτιµητές ελάχιστης διασποράς. Aνισότητα Cramer - Rao. Θεωρία Lehmann - Scheffe. Εκτιµητές µέγιστης πιθανοφάνειας και ιδιότητες αυτών. Mέθοδοι εκτιµήσεως (µεγίστης πιθανοφάνειας και µέθοδος των ροπών). Eκτίµηση παραµέτρων σε διάστηµα. ∆ιαστήµατα και περιοχές εµπιστοσύνης. Έλεγχοι υποθέσεων: Λήµµα Neyman - Pearson. 'Eλεγχος απλών υποθέσεων, έλεγχος συνθέτων υποθέσεων. Iσχυρότατα τεστ. Tέστ πηλίκου πιθανοφανειών.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη (πρόσωπο με πρόσωπο) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Casella, G. and Berger, R. (2002). Statistical Inference. 2 Edition. Duxbury Advanced Series.
- Hogg, R. V., McKean, J. W. and Craig, A. T. (2005). Introduction to Mathematical Statistics. Pearson Education, Inc.
- Mood, A., Graybill, F. and Boes, D. (1974). Introduction to the Theory of Statistics. McGrawHill.
- Roussas, G. (2003). An Introduction to Probability and Statistical Inference. Academic Press.
- Κουρούκλης, Σ. (2007). Στατιστική Ι. Πανεπιστήμιο Πατρών.