Ειδικά Θέματα Γεωμετρίας (ΓΕ8): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
* [[Specialized Topics in Geometry (ΓΕ8)|English version]]
* [[Specialized Topics in Geometry (ΓΕ8)|English version]]
* [[Περιγράμματα Μεταπτυχιακών Μαθημάτων]]
{{Course-Graduate-Top-GR}}
* [https://math.uoi.gr Τμήμα Μαθηματικών]


=== Γενικά ===
=== Γενικά ===

Αναθεώρηση της 23:42, 25 Νοεμβρίου 2022

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος ΓΕ8
Εξάμηνο 2
Τίτλος Μαθήματος ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού Υπόβαθρου Υπόβαθρου
Προαπαιτούμενα Μαθήματα -
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα

Η εξερεύνηση και παρουσίαση σύγχρονων περιοχών της Διαφορικής Γεωμετρίας. Θα παρουσιαστούν θέματα σύγχρονων περιοχών της Διαφορικής Γεωμετρίας. Συγκεκριμένα, θα αναπτυχθούν θέματα από τη θεωρία των ισομετρικών εμβαπτίσεων, των ελαχιστικών υποπολυπτυγμάτων, θέματα από τη θεωρία των συμπλεκτικών και πολυπτυγμάτων Kähler, καθώς και προβλήματα που αφορούν μεταβολές υποπολυπτυγμάτων σε πολυπτύγματα Riemann. Έμφαση θα δοθεί και σε προβλήματα που αφορούν γεωμετρικές ροές, όπως η ροή θερμότητας, η ροή Ricci και η ροή της μέσης καμπυλότητας. Μετά από αυτό το μάθημα αναμένεται ο μεταπτυχιακός φοιτητής να έχει όλα τα εφόδια ώστε να εκπονήσει τη μεταπτυχιακή η τη διδακτορική διατριβή του.

Γενικές Ικανότητες

Το μάθημα αποσκοπεί στο να μπορεί ο φοιτητής να αποκτήσει ειδικές γνώσεις στη Διαφορική Γεωμετρία.

Περιεχόμενο Μαθήματος

  • Μιγαδικά πολυπτύγματα.
  • Πολυπτύγματα Kähler.
  • Υποεμβαπτίσεις Riemann και προβολικοί χώροι.
  • Ομογενείς και συμμετρικοί χώροι.
  • Ομάδες ολονομίας.
  • Η τεχνική του Bochner.
  • Αρμονικές απεικονίσεις και αρμονικές μορφές.
  • Ελαχιστικά υποπολυπτύγματα.
  • Σύγκλιση πολυπτυγμάτων Riemann.
  • Θεωρήματα σύγκρισης.
  • Γεωμετρικές ροές.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων-Εργασίες 70.5
Σύνολο μαθήματος 187.5
Αξιολόγηση Φοιτητών Εβδομαδιαίες εργασίες, παρουσιάσεις, γραπτές εξετάσεις στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.

Συνιστώμενη Βιβλιογραφία

  • B. Andrews and C. Hopper, The Ricci flow in Riemannian Geometry, Springer, 2011.
  • T. Colding and W. Minicozzi, A course in minimal surfaces, Graduate Studies in Mathematics, Volume 121, 2011.
  • M. Dajczer and R. Tojeiro, Submanifolds theory beyond an introduction, Springer, 2019.
  • J. Jost, Riemannian Geometry and Geometric Analysis, 7th edition, Springer, 2017.
  • P. Petersen, Riemannian Geometry, 3rd edition, Graduate Texts in Mathematics, 171, Springer, 2016.