Introduction to Probability (MAY331): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Γραμμή 114: Γραμμή 114:
=== Attached Bibliography ===
=== Attached Bibliography ===


Books in English
See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. Additionally:
* Ross, S. (1998). A First Course in Probability. 5th Edition. Prentice Hall, Inc.
* Roussas, G. (2007). Introduction to Probability. Academic Press.
Books in Greek
* Ζωγράφος, Κ. (2008). Πιθανότητες, Πανεπιστήμιο Ιωαννίνων.  
* Ζωγράφος, Κ. (2008). Πιθανότητες, Πανεπιστήμιο Ιωαννίνων.  
* Hoel, P., Port, S. and Stone, C. (2001). Εισαγωγή στη Θεωρία Πιθανοτήτων. Πανεπιστημιακές Εκδόσεις Κρήτης.  
* Hoel, P., Port, S. and Stone, C. (2001). Εισαγωγή στη Θεωρία Πιθανοτήτων. Πανεπιστημιακές Εκδόσεις Κρήτης.  
* Κουνιά, Σ. και Μωϋσιάδη, Χ. (1995). Θεωρία Πιθανοτήτων Ι. Εκδόσεις Ζήτη, Θεσσαλονίκη.
* Κούτρας, Μ. (2012). Εισαγωγή στη Θεωρία Πιθανοτήτων και Εφαρμογές. Εκδόσεις Α. Σταμούλης. Αθήνα.
* Παπαϊωάννου, Τ. (2000). Εισαγωγή στις Πιθανότητες. Εκδόσεις Α. Σταμούλης. Αθήνα.
* Χαραλαμπίδη, Χ. (1990). Θεωρία Πιθανοτήτων και Εφαρμογές. Τεύχος 1. Εκδόσεις Συμμετρία. Αθήνα.
* Χαραλαμπίδη, Χ. (1990). Θεωρία Πιθανοτήτων και Εφαρμογές. Τεύχος 1. Εκδόσεις Συμμετρία. Αθήνα.

Αναθεώρηση της 22:06, 21 Ιουλίου 2022

Undergraduate Courses Outlines - Department of Mathematics

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΥ331

Semester 3
Course Title

Introduction to Probability

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 5, Credits: 7.5)

Course Type

General Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English, reading Course)

Course Website (URL)

http://users.uoi.gr/kzograf/SyllabousProbabilityEnglish.pdf

Learning Outcomes

Learning outcomes

The aim of this course is to provide with a comprehensive understanding of the basic definitions of probability and the basic principles and laws of probability theory. Further, the introduction to the concepts of the random variable and the distribution function, as well as, their characteristics, such as the mean, variance, moments, moment generating function, etc., is included in the main aims of the course. Special distributions, such as binomial, geometric, Pascal, Poisson, uniform, exponential, gamma, normal distribution, etc. are studied and their use and application is indicated. The course is compulsory, it is of an entry-level and it aims to develop skills that help the students to understand, design and exploit stochastic models to describe real problems. At the end of the course the students is expected to be able to:

  • Exploit and apply the classical and empirical definition of probability in order to calculate probabilities, by using combinatorial analysis.
  • Utilize the axiomatic foundation of the concept of probability and use it in order to derive and prove probabilistic laws and properties.
  • Understand and utilize classical probabilistic laws as the multiplicative theorem, the total probability theorem, Bayes’ formula, and independence for modeling respective problems. Emphasis is given to the use of interdisciplinary problems which are modeled by the application of the above probabilistic rules.
  • Understand the necessity of introducing and studying the concept of random variable, its characteristics (mean, variance, etc.) and the corresponding probability distribution. Special discrete and continuous distributions are defined and utilized for the description, analysis and study real problems from different areas (lifetime distributions, reliability etc.).
General Competences
  • Working independently
  • Decision-making
  • Production of free, creative and inductive thinking
  • Criticism and self-criticism

Syllabus

Basic ideas and laws of probability: Sample space and events. Classical-Statistical and Axiomatic definition of probability. Properties of probability and probabilistic formulas and laws. Elements of combinatorial analysis. Random variables and distribution functions. Discrete and continuous random variables and distribution functions. Standard discrete and continuous distributions: Binomial, Geometric, Pescal, Poisson, Uniform, Exponential, gamma, Normal etc. Characteristics of random variables and probability distributions: Expectation, variance, moments, moment generating function, properties. Transformation of random variables.

Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology

Use of ICT in communication with students

Teaching Methods
Activity Semester Workload
Lectures (13X5) 65
Working independently 100
Exercises-Homeworks 22.5
Course total 187.5
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English) which concentrates on the solution of problems which are motivated by the main themes of the course.

Attached Bibliography

See Eudoxus. Additionally:

  • Ζωγράφος, Κ. (2008). Πιθανότητες, Πανεπιστήμιο Ιωαννίνων.
  • Hoel, P., Port, S. and Stone, C. (2001). Εισαγωγή στη Θεωρία Πιθανοτήτων. Πανεπιστημιακές Εκδόσεις Κρήτης.
  • Χαραλαμπίδη, Χ. (1990). Θεωρία Πιθανοτήτων και Εφαρμογές. Τεύχος 1. Εκδόσεις Συμμετρία. Αθήνα.