Γενική Τοπολογία (AN2): Διαφορά μεταξύ των αναθεωρήσεων
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΑΝ2 |- ! Εξάμηνο | 1 |- ! Τίτλος Μαθήματος | ΓΕ...') |
Χωρίς σύνοψη επεξεργασίας |
||
(6 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[General Topology (AN2)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 39: | Γραμμή 41: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Γραμμή 131: | Γραμμή 133: | ||
=== Συνιστώμενη Βιβλιογραφία === | === Συνιστώμενη Βιβλιογραφία === | ||
<!-- Για να επεξεργαστείτε την βιβλιογραφία, επισκεφτείτε τη σελίδα --> | |||
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAM101-Biblio --> | |||
{{MAM101-Biblio}} | {{MAM101-Biblio}} |
Τελευταία αναθεώρηση της 11:53, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΝ2 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΓΕΝΙΚΗ ΤΟΠΟΛΟΓΙΑ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Γενικού υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Μαθησιακά αποτελέσματα με βάση την Ταξινόμηση κατά Bloom.
Κατανόηση:
Εφαρμογή:
Αξιολόγηση: Διδασκαλία μαθημάτων προπτυχιακού επιπέδου. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Τοπολογικοί χώροι, μέθοδοι κατασκευής τοπολογικών χώρων, συνεχείς απεικονίσεις, αξιώματα διαχωρισμού, χώροι Frechet, υπόχωροι, καρτεσιανά γινόμενα, χώροι πηλίκο, χώροι συναρτήσεων, συμπαγείς χώροι, τοπικά συμπαγείς χώροι, συμπαγοποιήσεις, αριθμήσιμα συμπαγείς χώροι, ψευδοσυμπαγείς χώροι, ακολουθιακά συμπαγείς χώροι, ολικά φραγμένοι και πλήρεις μετρικοί χώροι, παρασυμπαγείς χώροι, αριθμήσιμα παρασυμπαγείς χώροι, συνεκτικοί χώροι, είδη μη-συνεκτικότητας, διάσταση τοπολογικών χώρων και ιδιότητες της, ομοιόμορφοι χώροι, ολικά φραγμένοι, πλήρεις και συμπαγείς ομοιόμορφοι χώροι, χώροι προσέγγισης.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης |
| ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γλώσσα αξιολόγησης: Ελληνικά και Αγγλικά. Διαδικασία αξιολόγησης των φοιτητών:
Όλα τα προαναφερθέντα, συμπεριλαμβανομένων όλων των σχετικών κριτηρίων, αναγράφονται λεπτομερώς στην ιστοσελίδα του μαθήματος. Γίνεται επεξήγηση τους, στα πλαίσια των διαλέξεων, κατά την αρχή του εξαμήνου και, σε τακτά χρονικά διαστήματα, κατά τη διάρκεια του εξαμήνου. Γίνονται ενημερώσεις και υπενθυμίσεις μέσω της ιστοσελίδας του μαθήματος κατά την αρχή του εξαμήνου και, σε τακτά χρονικά διαστήματα, κατά τη διάρκεια του εξαμήνου. Παρέχονται όσες διευκρινίσεις ζητηθούν μέσω email ή ιστοχώρων κοινωνικής δικτύωσης και των εφαρμογών τους. |
Συνιστώμενη Βιβλιογραφία
- Ryszard Engelking - General Topology.
- James Munkres - Topology.
- John Kelley - General Topology.