Θεωρία Τελεστών (AN9): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΑΝ9 |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | ΘΕ...') |
Χωρίς σύνοψη επεξεργασίας |
||
(4 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Operator Theory (AN9)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 39: | Γραμμή 41: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Τελευταία αναθεώρηση της 11:54, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΝ9 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΘΕΩΡΙΑ ΤΕΛΕΣΤΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Μάθημα Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | Συναρτησιακή Ανάλυση |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στόχος του μαθήματος είναι η απόκτηση από τους μεταπτυχιακούς φοιτητές ειδικού υποβάθρου σε θέματα της θεωρίας τελεστών γενικότερα σε χώρους Banach και ειδικότερα σε χώρους Hilbert. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στο να αποκτήσει ο μεταπτυχιακός φοιτητής την ικανότητα στην ανάλυση και σύνθεση προχωρημένης εννοιών της Θεωρίας Τελεστών. Ο στόχος είναι να αποκτήσει τα εφόδια για αυτόνομη και ομαδική εργασία σε διεπιστημονικό περιβάλλον. |
Περιεχόμενο Μαθήματος
Φραγμένοι γραμμικοί τελεστές σε χώρους Banach και χώρους Hilbert. Φάσμα τελεστή, φάσμα αυτοσυζυγούς τελεστή. Συναρτήσεις αυτοσυζυγών τελεστών, φασματικό θεώρημα. Τοπολογίες σε χώρους τελεστών.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Παράδοση στον πίνακα. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Επικοινωνία με τους φοιτητές μέσω e-mail. | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτικά), παράδοση εργασιών και ασκήσεων στη διάρκεια του εξαμήνου (υποχρεωτικά), διάλεξη-παρουσίαση στον πίνακα από τον φοιτητή (προεραιτική). |
Συνιστώμενη Βιβλιογραφία
- Y. Abramovic C. Aliprantis, An invitation to Operator Theory.
- J. Conway, A course in Functional Analysis.
- R. Douglas, Banach Algebra Techniques in Operator Theory.
- V. Sunder Functional Analysis, Spectral Theory.
- W. Rudin Functional Analysis.