Ειδικά Θέματα Άλγεβρας (ΑΛ6): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
 
(8 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Περιγράμματα Μεταπτυχιακών Μαθημάτων]] - [https://math.uoi.gr Τμήμα Μαθηματικών]
* [[Specialized Topics in Algebra (ΑΛ6)|English version]]
{{Course-Graduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===
Γραμμή 27: Γραμμή 29:
|-
|-
! Τύπος Μαθήματος
! Τύπος Μαθήματος
| Γενικού υποβάθρου
| Ειδικού υποβάθρου
|-
|-
! Προαπαιτούμενα Μαθήματα
! Προαπαιτούμενα Μαθήματα
Γραμμή 47: Γραμμή 49:
|-
|-
! Μαθησιακά Αποτελέσματα
! Μαθησιακά Αποτελέσματα
| Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στις κυριότερες έννοιες, εργαλεία και μεθόδους της Θεωρίας Αναπαραστάσεων Ομάδων με τις εφαρμογές της σε άλλους κλάδους των Μαθηματικών, ιδιαίτερα στη Θεωρία Ομάδων, και σε συναφείς επιστήμες, για παράδειγμα στη Φυσική. Στο τέλος τού μαθήματος περιμένουμε από τον φοιτητή να έχει κατανοήσει τους ορισμούς και τα βασικά θεωρήματα τα οποία αναλύονται στο μάθημα, να έχει κατανοήσει πως αυτά εφαρμόζονται σε διακεκριμένα παραδείγματα προερχόμενα από διαφορετικούς κλάδους των Μαθηματικών και άλλων επιστημών,  να είναι σε θέση να τα εφαρμόζει για την εξαγωγή νέων στοιχειωδών συμπερασμάτων σε διάφορα πεδία, και τέλος να μπορεί να εκτελεί ορισμένους (όχι τόσο προφανείς) υπολογισμούς οι οποίοι σχετίζονται με προβλήματα της θεωρίας ομάδων.  
| Ο στόχος του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή σε θέματα που αφορούν την θεωρία μεταθετικών δακτυλίων.
|-
|-
! Γενικές Ικανότητες
! Γενικές Ικανότητες
|
|
Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος να αποκτήσει ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Θεωρίας Αναπαραστάσεων Ομάδων, η οποία αποτελεί ένα σημαντικό κλάδο των σύγχρονων Μαθηματικών, ιδιαίτερα της Άλγεβρας, και η οποία έχει πολλές εφαρμογές σε διάφορους κλάδους των Μαθηματικών και άλλων επιστημών, για παράδειγμα στη Φυσική. Ερχόμενος ο πτυχιούχος για πρώτη φορά σε επαφή με έννοιες της Θεωρίας Αναπαραστάσεων Ομάδων, προάγεται η δημιουργική, αναλυτική και επαγωγική σκέψη του, και η ικανότητά του να εφαρμόζει αφηρημένες γνώσεις σε διάφορα πεδία τα οποία αποτελούν θέματα αιχμής σε διάφορους κλάδους των Μαθηματικών και συναφών επιστημών.  
Το μάθημα αποσκοπεί στο να μπορεί ο μεταπτυχιακός φοιτητής αν αποκτήσει την ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Μεταθετικής Άλγεβρας.
|}
|}


=== Περιεχόμενο Μαθήματος ===
=== Περιεχόμενο Μαθήματος ===


* Αναπαραστάσεις και Χαρακτήρες Ομάδων.
Θέματα Μεταθετικής και Συνδυαστικής Άλγεβρας:  Θεώρημα Βάσης Hilbert, Πρωτογενής Ανάλυση, Τοπικοποίηση, Διάσταση, Σειρές Hilbert, Βάσεις Groebner, Μονοπλεκτικά συμπλέγματα και ομολογία, Stanley-Reisner Ιδεώδη, Θεώρημα Nullstellensatz του Hilbert.
* Ομάδες και Ομομορφισμοί.
* FG-πρότυπα και Ομαδο-άλγεβρες.
* Το Λήμμα του Schur και το θεώρημα του Maschke.
* Ομαδο-άλγεβρες και ανάγωγα πρότυπα.
* Κλάσεις συζυγίας και χαρακτήρες.
* Πίνακες χαρακτήρων και σχέσεις ορθογωνιότητας.
* Κανονικές υποομάδες και ανυψωμένοι χαρακτήρες.
* Παραδείγματα στοιχειωδών πινάκων χαρακτήρων.
* Τανυστικά γινόμενα. Περιορίζοντας αναπαραστάσεις σε υποομάδες.
* Εφαρμογές.


=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση ===
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση ===
Γραμμή 87: Γραμμή 79:
| 39
| 39
|-
|-
| Μελέτη της θεωρίας
| Αυτοτελής Μελέτη
| 78
| 78
|-
|-
| Eπίλυση ασκήσεων
| Επίλυση Ασκήσεων
| 70.5
| 70.5
|-
|-
Γραμμή 98: Γραμμή 90:
|-
|-
! Αξιολόγηση Φοιτητών
! Αξιολόγηση Φοιτητών
| Η αξιολόγηση βασίζεται συνδυαστικά στις επιδόσεις του μεταπτυχιακού φοιτητή σε:
|
* Εβδομαδιαίες εργασίες,
Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτική), εργασίες ή/και ενδιάμεση εξέταση (προαιρετική).
* Παρουσιάσεις κατά τη διάρκεια του εξαμήνου,
* Εργασία στο τέλος του μαθήματος, Γραπτή εξέταση στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.
|}
|}



Τελευταία αναθεώρηση της 12:02, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΛ6
Εξάμηνο 2
Τίτλος Μαθήματος ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Ο στόχος του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή σε θέματα που αφορούν την θεωρία μεταθετικών δακτυλίων.
Γενικές Ικανότητες

Το μάθημα αποσκοπεί στο να μπορεί ο μεταπτυχιακός φοιτητής αν αποκτήσει την ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Μεταθετικής Άλγεβρας.

Περιεχόμενο Μαθήματος

Θέματα Μεταθετικής και Συνδυαστικής Άλγεβρας: Θεώρημα Βάσης Hilbert, Πρωτογενής Ανάλυση, Τοπικοποίηση, Διάσταση, Σειρές Hilbert, Βάσεις Groebner, Μονοπλεκτικά συμπλέγματα και ομολογία, Stanley-Reisner Ιδεώδη, Θεώρημα Nullstellensatz του Hilbert.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών

Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτική), εργασίες ή/και ενδιάμεση εξέταση (προαιρετική).

Συνιστώμενη Βιβλιογραφία

  • Μαλιάκας Μιχάλης, Εισαγωγή στην Μεταθετική Άλεβρα, Εκδόσεις Σοφία, 2008
  • Atiyah, M. F.; Macdonald, I. G., Introduction to commutative algebra. Addison-Wesley Publishing Co., 1969 ix+128 pp.