Κλασσική Διαφορική Γεωμετρία (ΓΕ1): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
 
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
* [[Classical Differential Geometry (ΓΕ1)|English version]]
* [[Classical Differential Geometry (ΓΕ1)|English version]]
* [[Περιγράμματα Μεταπτυχιακών Μαθημάτων]]
{{Course-Graduate-Top-GR}}
* [https://math.uoi.gr Τμήμα Μαθηματικών]
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===

Τελευταία αναθεώρηση της 12:02, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΓΕ1
Εξάμηνο 1
Τίτλος Μαθήματος ΚΛΑΣΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού Υπόβαθρου
Προαπαιτούμενα Μαθήματα Τοπολογία, Ανάλυση πολλών μεταβλητών, Μιγαδική ανάλυση
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στην θεωρία των υποπολυπτυγμάτων του Ευκλειδείου χώρου Rn. Παρουσιάζονται θεμελιώδεις έννοιες, όπως απεικόνιση Gauss και τελεστής Weingarten. Με την βοήθεια αυτών των αντικειμένων εισάγονται διάφορα μεγέθη, μεταξύ άλλων η μέση καμπυλότητα. Δίνονται διάφοροι χαρακτηρισμοί των υποπολυπτυγμάτων του Rn κάτω από ολικές συνθήκες. Το μάθημα ολοκληρώνεται με μια επισκόπιση των διδιάστατων ελαχιστικών επιφανειών στον Rn και αναδεικνύεται η στενή σχέση της Διαφορικής Γεωμετρίας με άλλους κλάδους των μαθηματικών, όπως με τη θεωρία των διαφορικών εξισώσεων με μερικές παραγώγους, με τον λογισμό μεταβολών, με τη μιγαδική ανάλυση και την θεωρία μέτρου. Μετά το τέλος του μαθήματος περιμένουμε ο φοιτητής να είναι πλήρως εξοικειωμένος με τις παραπάνω έννοιες.
Γενικές Ικανότητες Το μάθημα αποσκοπεί στο να μπορεί ο φοιτητής να αποκτήσει γνώσεις στη θεωρία υποπολυπτυγμάτων του Ευκλειδείου χώρου.

Περιεχόμενο Μαθήματος

  • Πολυπτύγματα του Ευκλειδείου χώρου.
  • Εφαπτόμενη και κάθετη δέσμη.
  • Πρώτη και δεύτερη θεμελιώδης μορφή.
  • Τελεστής Weingarten και απεικόνιση Gauss.
  • Κυρτές υπερεπιφάνειες.
  • Το Θεώρημα του Hadamard.
  • Εξίσωση 1ης και 2ης μεταβολής του εμβαδού.
  • Ελαχιστικά υποπολυπτύγματα του Rn.
  • Ελαχιστικές επιφάνειες του Rn.
  • Αναπαραμέτρηση Weierstrass.
  • Το θεώρημα του Bernstein.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών .
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων-Εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Εβδομαδιαίες εργασίες, παρουσιάσεις, γραπτές εξετάσεις στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.

Συνιστώμενη Βιβλιογραφία

  • M. do Carmo, Riemannian Geometry, Birkhaüser Boston, Inc., Boston, MA, 1992.
  • J. Jost, Riemannian Geometry and Geometric Analysis, Universitext, Springer, 2017.
  • J. Lee, Introduction to smooth manifolds, Second edition, Graduate Texts in Mathematics, 218, Springer, 2013.
  • Δ. Κουτρουφιώτης, Διαφορική Γεωμετρία, Πανεπιστήμιο Ιωαννίνων, 1994.