Αλγεβρική Τοπολογία Ι (ΓΕ5): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[Algebraic Topology I (ΓΕ5)|English version]] | * [[Algebraic Topology I (ΓΕ5)|English version]] | ||
{{Course-Graduate-Top-GR}} | {{Course-Graduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:02, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | ΓΕ5 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΑΛΓΕΒΡΙΚΗ ΤΟΠΟΛΟΓΙΑ Ι |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διάφορες μορφές διδασκαλίας (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού Υπόβαθρου, Ανάπτυξης ιδιαίτερων δεξιοτήτων στην τοπολογία - γεωμετρία - άλγεβρα |
Προαπαιτούμενα Μαθήματα | ΜΑΥ413 Τοπολογία, ΜΑΥ422 Αλγεβρικές Δομές I |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Η αλγεβρική τοπολογία είναι ένας κλάδος των μαθηματικών ο οποίος αναπτύχθηκε τον εικοστό αιώνα με καταβολές σχετιζόμενες με αρχαία προβλήματα των μαθηματικών. Το κύριο χαρακτηριστικό του κλάδου είναι οι ποικίλες εφαρμογές και επηρεασμοί άλλων κλάδων στα μαθηματικά και άλλες επιστήμες. Όπως άλγεβρα, ανάλυση, διαφορική και αλγεβρική γεωμετρία, θεωρία αριθμών. Αλλά και φυσική, βιολογία, οικονομικές επιστήμες και επιστήμη υπολογιστών. Απαιτείται ευχέρεια και χρήση βασικών εννοιών από τη Γενική Τοπολογία. Μελετάται η συμπαγής Ανοικτή Τοπολογία σαν εργαλείο μελέτης χώρων απεικονίσεων. Γίνεται μελέτη ομοτοπίας και χρήση εργαλείων για υπολογισμούς. Μελετάται πότε μια κατηγορία χώρων είναι "καλή" από την τοπολογική σκοπιά; Μελέτη ομοτοπίας και χρήση εργαλείων για υπολογισμούς. Επίσης μελέτη του ερωτήματος "Πως θα μπορούσαμε να ξεχωρίσουμε τοπολογικούς χώρους μεταξύ τους"; Υπολογισμός των πρωταρχικών ομάδων για βασικούς τοπολογικούς χώρους μέσω των καλυπτικών απεικονίσεων και ταξινόμηση αυτών. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Συμπαγής Ανοικτή Τοπολογία. Ομοτοπία, πρωταρχική ομάδα. Ομοτοπία του κύκλου. Cell complexes. Πραγματικός προβολικός χώρος. Μιγαδικός προβολικός χώρος. Καλυπτικοί χώροι. Παραμορφώσεις. Ταξινόμηση καλυπτικών χώρων. Εφαρμογές. Θεώρημα Scheifert-Van Kampen. Πρωταρχικές ομάδες επιφανειών.
Singular ομολογία. Ομοτοπικές απεικονίσεις και ομολογία. Εργαλεία, μακριές ακριβείς ακολουθίες. Ομολογία σφαίρας. Σχετική ομολογία, Εκτομή. Βαθμός απεικονίσεων στη σφαίρα, Θεωρήματα σταθερού σημείου.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση, Προφορική παρουσίαση, εβδομαδιαίες ασκήσεις. |
Συνιστώμενη Βιβλιογραφία
- A first course in topology, j. Muncres, Prentice Hall.
- Algebraic Topology, A. Hatcher, https://www.math.cornell.edu/~hatcher/AT/
- A Concise Course in Algebraic Topology, J. P. May, https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf