Αριθμητική Επίλυση Διαφορικών Εξισώσεων με Μερικές Παραγώγους (ΑΑ6): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Numerical Solution of Partial Differential Equations (ΑΑ6)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΑ6 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υποβάθρου, ανάπτυξη δεξιοτήτων. |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Χώροι Hilbert, το θεώρημα αναπαράστασης του Riesz, το θεώρημα των Lax-Milgram, το θεώρημα του Cea.
- Στοιχεία από τη θεωρία των χώρων Sobolev στη μία διάσταση, γενικευμένες παράγωγοι, ανισότητα των Poincare-Friedrichs,
- Η μεταβολική μορφή και η μέθοδος των πεπερασμένων στοιχείων για μονοδιάστατα και δυσδιάστατα ελλειπτικά προβλήματα συνοριακών τιμών. Εκ των προτέρων και εκ των υστέρων εκτιμήσεις σφάλματος, αυτόματη επιλογή του διαμερισμού.
- Ημιδιακριτά και πλήρως διακριτά σχήματα για παραβολικά προβλήματα αρχικών τιμών και συνοριακών συνθηκών. Χρονική διακριτοποίηση με την άμεση και πεπλεγμένη μέθοδο του Euler και τη μέθοδο των Crank-Nicolson.
- Υλοποίηση της μεθόδου πεπερασμένων στοιχείων στον υπολογιστή.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο. | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- “Μέθοδοι πεπερασμένων στοιχείων”, Γ. Δ. Ακρίβης, Λευκωσία, 2005.
- “Αριθμητική λύση μερικών διαφορικών εξισώσεων”, Μ. Πλεξουσάκης, & Π. Χατζηπαντελίδης, Κάλλιππος, 2015. http://hdl.handle.net/11419/665
- “The Mathematical Theory of Finite Element Methods”, S.C. Brenner, & L.R. Scott (Third ed., Vol. 15), Springer, New York, 2008.
- “Galerkin Finite Element Methods for Parabolic Problems”, V. Thomee, Springer-Verlag, 1997.