Ολοκληρώσιμα Συστήματα (ΕΜ6): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Integrable Systems (EM6)|English version]] | * [[Integrable Systems (EM6)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:10, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | EM6 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΟΛΟΚΛΗΡΩΣΙΜΑ ΣΥΣΤΗΜΑΤΑ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υπόβαθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Με τον όρο ολοκληρώσιμα συστήματα εννοούμε μη γραμμικές διαφορικές εξισώσεις οι οποίες, θεωρητικά, τουλάχιστον, μπορούν να επιλυθούν αναλυτικά. Αυτό σημαίνει ότι η λύση μπορεί να προκύψει από ένα πεπερασμένο αριθμό αλγεβρικών πράξεων και ολοκληρώσεων. Τέτοια συστήματα είναι πολύ σπάνια - οι περισσότερες μη γραμμικές διαφορικές εξισώσεις οδηγούν σε χαοτική συμπεριφορά και δεν μπορούμε να βρούμε τις ακριβείς τους λύσεις. Τα ολοκληρώσιμα συστήματα οδηγούν ωστόσο σε πολύ ενδιαφέροντα μαθηματικά που κυμαίνονται από τη διαφορική γεωμετρία και τη σύνθετη ανάλυση στη κβαντική θεωρία πεδίου και τη δυναμική των ρευστών. Τα κύρια θέματα που εξετάζονται στο μάθημα, που αποτελούν και τις δεξιότητες που θα αποκομίσουν οι φοιτητές, είναι:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Ολοκληρωσιμότητα στην Κλασική Μηχανική, ανάλυση Painleve, μετασχηματισμοί Fourier, ο μετασχηματισμός της αντίστροφης σκέδασης και θεωρία σολιτονίων.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- P. G. Drazin, R. S. Johnson, Solitons: An Introduction, Cambridge University Press, 1989.
- M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM 1981.
- Προσωπικές σημειώσεις του διδάσκοντα.