Λογισμός Μιγαδικών Συναρτήσεων και Εφαρμογές (ΕΜ8): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Calculus of Complex Functions and Applications (EM8)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:10, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | EM8 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΛΟΓΙΣΜΟΣ ΜΙΓΑΔΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υπόβαθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στο τέλος του μαθήματος ο φοιτητής πρέπει να είναι σε θέση να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Μιγαδικοί αριθμοί και η τοπολογία του ℂ. Συναρτήσεις μιας μιγαδικής μεταβλητής, όρια, συνέχεια και διαφόριση. Οι εξισώσεις Cauchy-Riemann. Αναλυτικές και αρμονικές συναρτήσεις. Σύμμορφες απεικονίσεις. Οι στοιχειώδεις συναρτήσεις από το ℂ στο ℂ, ιδιαίτερα οι μετασχηματισμοί Möbius και η εκθετική συνάρτηση. Λύση προβλημάτων συνοριακών τιμών στο επίπεδο για την εξίσωση Laplace χρησιμοποιώντας σύμμορφες απεικονίσεις. Μιγαδική ολοκλήρωση. Το θεώρημα Cauchy. Η αρχή μεγίστου για αναλυτικές και αρμονικές συναρτήσεις. Η φόρμουλα του Poisson. Ομοιόμορφη σύγκλιση και αναλυτικότητα. Δυναμοσειρές. Σειρές Taylor και Laurent με εφαρμογές. Ρίζες και απομονωμένες ιδιομορφίες. Υπολογισμός υπολοίπων με εφαρμογές. Το θεώρημα Rouché. Σύντομη σύνδεση με σειρές και ολοκληρώματα Fourier. Το πρόβλημα Riemann-Hilbert.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στη τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, Κωδικός Βιβλίου στον Εύδοξο: 226, Έκδοση: 1η/2005, Συγγραφείς: CHURCHILL R., BROWN J., ISBN: 960-7309-41-3, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ
- ΜΙΓΑΔΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ, Κωδικός Βιβλίου στον Εύδοξο: 12404786, Έκδοση: 1η/2011, Συγγραφείς: ABLOWITZ MARK J., ΦΩΚΑΣ ΑΘΑΝΑΣΙΟΣ Σ., ISBN: 978-960-524-337-1, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ
- Αναλυτικές συναρτήσεις και μερικές εφαρμογές τους, Κωδικός Βιβλίου στον Εύδοξο: 12166, Έκδοση: 2η έκδ./1998, Συγγραφείς: Τερσένοβ Σάββας, ISBN: 978-960-7140-66-1, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): ΔΙΑΥΛΟΣ Α.Ε. ΕΚΔΟΣΕΙΣ ΒΙΒΛΙΩΝ
- Μιγαδικές συναρτήσεις, Κωδικός Βιβλίου στον Εύδοξο: 11116, Έκδοση: 1η έκδ./1996, Συγγραφείς: Παντελίδης Γεώργιος Ν., Κραββαρίτης Δημήτρης Χ., Νασόπουλος Β., ISBN: 960-431-358-4, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): Ζήτη Πελαγία & Σια Ι.Κ.Ε.
- Μιγαδικές συναρτήσεις, Κωδικός Βιβλίου στον Εύδοξο: 11115, Έκδοση: 1η έκδ./2008, Συγγραφείς: Ξένος Θανάσης Π., ISBN: 978-960-456-092-9, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): Ζήτη Πελαγία & Σια Ι.Κ.Ε.