Θεωρία Πολυπλοκότητας (ΠΛ1): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Complexity Theory (ΠΛ1)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:10, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΠΛ1 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Επιλογής |
Προαπαιτούμενα Μαθήματα | Απαραίτητες γνώσεις από 641-Σχεδίαση και Ανάλυση Αλγορίθμων |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Ο κύριος σκοπός του μαθήματος είναι η εισαγωγή στην έννοια της πολυπλοκότητας χρόνου και χώρου για την επίλυση δύσκολων προβλημάτων.
Μέθοδοι απόδειξης NP-πληρότητας προβλημάτων.
Στο μάθημα περιλαμβάνονται ατομικές ασκήσεις, περιληπτική συγγραφή και παρουσίαση σχετικών ερευνητικών εργασιών. Στόχος του μαθήματος είναι οι φοιτητές να είναι σε θέση:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- ΝΡ και υπολογιστική δυσεπιλυσιμότητα
- Η κλάση PSPACE
- Επέκταση των ορίων επιλυσιμότητας
- Προσεγγιστικοί Αλγόριθμοι
- Τοπική Αναζήτηση
- Τυχαιοποιημένοι Αλγόριθμοι
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Υποστήριξη Μαθησιακής διαδικασίας μέσω της ηλεκτρονικής πλατφόρμας e-class | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Computational Complexity, Christos Papadimitriou.
- Computers and Intractability, M. R. Garey and D. S. Johnson.
- J. Kleinberg and E. Tardos, Σχεδιασμός Αλγορίθμων, ελληνική έκδοση, Εκδόσεις Κλειδάριθμος, 2008
- T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Εισαγωγή στους Αλγορίθμους, ελληνική έκδοση, Πανεπιστημιακές Εκδόσεις Κρήτης, 2012.