Real Analysis (MAE617): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Γραμμή 109: Γραμμή 109:
=== Attached Bibliography ===
=== Attached Bibliography ===


See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. Additionally:
See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
* Charalambos D. Aliprantis, Owen Burkinshaw, Principles of Real Analysis,  Academic Press.
* Charalambos D. Aliprantis, Owen Burkinshaw, Principles of Real Analysis,  Academic Press.
* Michael O Searcoid, Metric Spaces, Springer Undergraduate Mathematics Series.
* Michael O Searcoid, Metric Spaces, Springer Undergraduate Mathematics Series.

Αναθεώρηση της 10:36, 26 Ιουλίου 2022

Undergraduate Courses Outlines - Department of Mathematics

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code MAE511
Semester

5

Course Title

Real Analysis

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes

Course Website (URL)

http://www.math.uoi.gr/GR/studies/undergraduate/courses/perigr/MAE_511.pdf

Learning Outcomes

Learning outcomes

The course aims in presenting topics concerning real valued functions defined on a metric space. Pointwise and uniform convergence of a sequence of functions are discussed as so as topics like Ascoli-Arzela theorem and Stone-Weirstrass theorem. Applications of the above are also given.

General Competences
  • Working independently
  • Team work
  • Working in an international environment
  • Working in an interdisciplinary environment
  • Production of new research ideas.

Syllabus

Function spaces on a metric space (X,d), pointwise and uniform convergence of sequence of functions, the space B(X) of real bounded functions on X-, the space C(X) of continuous functions on X – equicontinuous subsets of C(X), Ascoli-Arzela theorem and applications, Dini's theorem, Stone-Weierstrass theorem and applications, separable metric spaces, Lindelof's theorem on Euclidean spaces, the Cantor set, the Cantor function-applications.

Teaching and Learning Methods - Evaluation

Delivery

Face-to-face

Use of Information and Communications Technology

Use of ICT for the presentation and communication for submission of the exercises

Teaching Methods
Activity Semester Workload
Lectures 39
Home exercises 30
Independent study 81
Course total 150
Student Performance Evaluation

Written examination at the end of the semester.

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:

  • Charalambos D. Aliprantis, Owen Burkinshaw, Principles of Real Analysis, Academic Press.
  • Michael O Searcoid, Metric Spaces, Springer Undergraduate Mathematics Series.