Infinitesimal Calculus III (MAY311): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Απειροστικός Λογισμός III (MAY311)|Ελληνική Έκδοση]] | * [[Απειροστικός Λογισμός III (MAY311)|Ελληνική Έκδοση]] | ||
{{Course-UnderGraduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === |
Τελευταία αναθεώρηση της 12:23, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Undergraduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAΥ311 |
Semester | 3 |
Course Title |
Infinitesimal Calculus III |
Independent Teaching Activities |
Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5) |
Course Type |
General Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek, English |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
The main learning outcomes are the:
|
---|---|
General Competences |
|
Syllabus
- Algebraic and topological structure of the Euclidean space R^n and geometric representation of the two- and three-dimensional space. Vector-sequences and their use concerning the topology of R^n.
- Real- and Vector-valued functions of several variables. Limits and continuity of functions.
- Partial derivatives. Partially differentiable and differentiable functions. Directional derivative. Differential operators and curves in R^n.
- Higher order partial derivatives. Taylor Theorem. Local and global extrema of real-valued functions. Implicit Function Theorem. Inverse Function Theorem. Constrained extrema.
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
| ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English) |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus: