Rings, Modules and Applications (MAE628): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
 
(8 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Undergraduate Courses Outlines]] - [https://math.uoi.gr  Department of Mathematics]
* [[Δακτύλιοι, Πρότυπα και Εφαρμογές (MAE628)|Ελληνική Έκδοση]]
{{Course-UnderGraduate-Top-EN}}
{{Menu-OnAllPages-EN}}


=== General ===
=== General ===
Γραμμή 26: Γραμμή 28:
! Course Title
! Course Title
|
|
Modules, Rings and Applications
Rings, Modules and Applications
|-
|-
! Independent Teaching Activities
! Independent Teaching Activities
Γραμμή 48: Γραμμή 50:
|-
|-
! Course Website (URL)
! Course Website (URL)
| -
| See [https://ecourse.uoi.gr/ eCourse], the Learning Management System maintained by the University of Ioannina.
|}
|}
=== Learning Outcomes ===
=== Learning Outcomes ===
{| class="wikitable"
{| class="wikitable"
Γραμμή 105: Γραμμή 108:
=== Attached Bibliography ===
=== Attached Bibliography ===


See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. Additionally:
<!-- In order to edit the bibliography, visit the webpage -->
* Μ. Μαλιάκας: «Εισαγωγή στη Μεταθετική Άλγεβρα»,  Εκδόσεις Σοφία. 
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAE628-Biblio -->
* N. Jacobson: “Basic Algebra I”, Dover Publications (1985).
 
* S. Lang: «Άλγεβρα», Εκδόσεις Πολιτεία (2010).
See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
 
{{MAE628-Biblio}}

Τελευταία αναθεώρηση της 12:31, 15 Ιουνίου 2023

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

MAE628

Semester

6

Course Title

Rings, Modules and Applications

Independent Teaching Activities

Lectures, laboratory exercises (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

The principal aim of the course is to introduce the students to the main tools and methods of the theory of modules and rings. At the end of the course we expect the student to have understood the definitions and basic theorems which are discussed in the course, to have understood how they are applied in discrete examples, to be able to apply the material in order to extract new elementary conclusions, and finally to perform some (no so obvious) calculations.

General Competences

The contact of the undergraduate student with the ideas and concepts of the theory of modules and rings, (a) promotes the creative, analytical and deductive thinking and the ability to work independently, (b) improves his critical thinking and his ability to apply abstract knowledge in various field.

Syllabus

  • Elementary Ring Theory.
  • Euclidean Domains, Principal Ideal Domains and Unique Factorization Domains.
  • Module Theory.
  • Modules over polynomial rings.
  • Finitely generated and free modules.
  • Modules over Principal Ideal Domains.
  • Decomposition Theorems.
  • Applications to Linear Algebra and Abelian groups.

Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures (13X3) 39
Working independently 78
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems.

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:

  • Μ. Μαλιάκας: «Εισαγωγή στη Μεταθετική Άλγεβρα»,  Εκδόσεις Σοφία. 
  • N. Jacobson: “Basic Algebra I”, Dover Publications (1985).
  • S. Lang: «Άλγεβρα», Εκδόσεις Πολιτεία (2010).