Computational Statistics (MAE836): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
 
(4 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Undergraduate Courses Outlines]] - [https://math.uoi.gr  Department of Mathematics]
* [[Υπολογιστική Στατιστική (ΜΑΕ836)|Ελληνική Έκδοση]]
{{Course-UnderGraduate-Top-EN}}
{{Menu-OnAllPages-EN}}


=== General ===
=== General ===
Γραμμή 106: Γραμμή 108:
=== Attached Bibliography ===
=== Attached Bibliography ===


See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
<!-- In order to edit the bibliography, visit the webpage -->
* Davison, A. C., Hinkley, D. V., Bootstrap methods and their application. Cambridge University Press 1997.
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAE836-Biblio -->
* Rizzo, M. L., Statistical computing with R. Chapman & Hall/CRC 2007.
 
* Robert, C. P., Casella, G., Introducing Monte Carlo methods with R. Springer Verlag 2009
See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
 
{{MAE836-Biblio}}

Τελευταία αναθεώρηση της 12:38, 15 Ιουνίου 2023

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΕ836

Semester

8

Course Title

Computational Statistics

Independent Teaching Activities

Lectures-Laboratory (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English, reading Course)

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

Students completing this course should be able to:

  • Apply the most common methods of computational statistics
  • generate random numbers from discrete and continuous distributions
  • use R and other statistical software to perform statistical analysis
  • use different methods to solve an optimization problem.
General Competences
  • Working independently
  • Decision-making
  • Production of free, creative and inductive thinking
  • Criticism and self-criticism.

Syllabus

Using R the following topics will be discussed: Generation of random numbers from discrete and continuous distributions. Monte Carlo integration. Using simulation techniques to visualize classical results of statistical inference via simulated data (asymptotic normality of mean, power of a test etc). Density Estimation and Applications (Kernel density estimation). Methods of Resampling ς (Jackknife και Bootstrap). Numerical maximization techniques (Newton-Raphson, Fisher scoring, expectation-maximization [EM]).

Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures 39
Working independently 78
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English) which concentrates on the solution of problems which are motivated by the main themes of the course.

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:

  • Davison, A. C., Hinkley, D. V., Bootstrap methods and their application. Cambridge University Press 1997.
  • Rizzo, M. L., Statistical computing with R. Chapman & Hall/CRC 2007.
  • Robert, C. P., Casella, G., Introducing Monte Carlo methods with R. Springer Verlag 2009