Linear Programming (MAE631K): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
 
(16 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
* [[Γραμμικός Προγραμματισμός (ΜΑΕ631K)|Ελληνική Έκδοση]]
{{Course-UnderGraduate-Top-EN}}
{{Menu-OnAllPages-EN}}
=== General ===
=== General ===
{| class="wikitable"
{| class="wikitable"
Γραμμή 16: Γραμμή 20:
! Course Code
! Course Code
|
|
ΜΑΕ631
ΜΑΕ631K
|-
|-
! Semester
! Semester
Γραμμή 46: Γραμμή 50:
|-
|-
! Course Website (URL)
! Course Website (URL)
| -
| See [https://ecourse.uoi.gr/ eCourse], the Learning Management System maintained by the University of Ioannina.
|}
|}
=== Learning Outcomes ===
=== Learning Outcomes ===
{| class="wikitable"
{| class="wikitable"
Γραμμή 53: Γραμμή 58:
! Learning outcomes
! Learning outcomes
|
|
The course learning outcomes are: the introduction of the students to linear programming formulation, the comprehension of the mathematical properties of linear programming problems, the understanding of the theory underlying the simplex algorithm, the understanding of the dual theory and its interpretation, the use of LINDO software package to solve linear programming problems. Upon successful completion of the course the student will be able to:
The course learning outcomes are: the introduction of the students to linear programming
* to model linear programming problems.
formulation, the comprehension of the mathematical properties of linear programming
* to solve linear programming problems with the Simplex method.
problems, the understanding of the theory underlying the simplex algorithm, the
* to apply the appropriate modifications of Simplex method when it is necessary.
understanding of the dual theory and its interpretation, the use of LINDO software package
* to validate and interpret the results obtained when linear programming problems are solved using LINDO software
to solve linear programming problems
 
Upon successful completion of the course the student will be able to:
# to model linear programming problems.
# to solve linear programming problems with the Simplex method.
# to apply the appropriate modifications of Simplex method when it is necessary.
# to validate and interpret the results obtained when linear programming problems are solved using LINDO software
|-
|-
! General Competences
! General Competences
Γραμμή 67: Γραμμή 78:
* Synthesis of data and information, with the use of the necessary technology.  
* Synthesis of data and information, with the use of the necessary technology.  
|}
|}
=== Syllabus ===
=== Syllabus ===
* Linear programming problems formulation
 
* Graphical solution  
* Formulating linear programming problems
* Graphical solution
* The Simplex Method 
* The Simplex Method 
* The Big M method  
* The bib M method
* The Two-Phase Simplex Method
* The Two-Phase Simplex Method
* Dual theory  
* Dual theory
* Sensitivity analysis
* Sensitivity analysis
* Transportation problem  
* Transportation problem
* Assignment problem  
* Assignment problem
* Transshipment problem
* Other network problems
 
=== Teaching and Learning Methods - Evaluation ===
=== Teaching and Learning Methods - Evaluation ===
{| class="wikitable"
{| class="wikitable"
Γραμμή 86: Γραμμή 102:
! Use of Information and Communications Technology
! Use of Information and Communications Technology
|
|
Lindo Software, Email, class web
Lindo Software, Email, class web, MSTeams
|-
|-
! Teaching Methods
! Teaching Methods
Γραμμή 115: Γραμμή 131:


=== Attached Bibliography ===
=== Attached Bibliography ===
* ΒΑΣΙΛΕΙΟΥ Π. και ΤΣΑΝΤΑΣ Ν., Εισαγωγή στην επιχειρησιακή έρευνα,  Εκδόσεις ΖΗΤΗ 2000.
 
* ΦΑΚΙΝΟΥ Δ. και ΟΙΚΟΝΟΜΟΥ Α., Εισαγωγή στην επιχειρησιακή έρευνα- Θεωρία και Ασκήσεις, Αθήνα
<!-- In order to edit the bibliography, visit the webpage -->
* ΚΟΥΝΙΑΣ Σ. και ΦΑΚΙΝΟΣ Δ., Γραμμικός Προγραμματισμός, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAE631K-Biblio -->
* ΛΟΥΚΑΚΗΣ Μ. Επιχειρησιακή έρευνα γραμμικός προγραμματισμός, Εκδοτικό Κέντρο Βορείου Ελλάδας, 1994.
 
* ΟΙΚΟΝΟΜΟΥ Γ. και ΓΕΩΡΓΙΟΥ Α., ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΤΗ ΛΗΨΗ ΔΙΟΙΚΗΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ, Τόμοι Α και Β, Εκδόσεις Μπένου, Αθήνα 2000.
See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
* ΟΙΚΟΝΟΜΟΥ Γ. και ΤΣΟΤΡΑ Γ . ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΠΕΡΙΠΤΩΣΕΩΝ, Εκδόσεις Μπένου, Αθήνα 1996
 
* ΠΑΠΑΡΡΙΖΟΣ Κ., Γραμμικός Προγραμματισμός. Εκδόσεις Ζυγός, Θεσσαλονίκη 199#  
{{MAE631K-Biblio}}
* ΣΙΣΚΟΣ Γ., Γραμμικός Προγραμματισμός, Εκδόσεις Νέων Τεχνολογιών, Αθήνα 1998.
* HAMDY TAHA, Επιχειρησιακή Έρευνα Εκδόσεις Α. Τζιολα & ΥΙΟΙ Α.Ε., 2011
* HILLIER F. S.  and G. J. Lieberman Introduction Operations research. The McGraw-Hill Companies, 2001
* WINSTON W. L., Operations research (Applications and algorithms). Duxbury Press (International Thomson Publishing) 1994.
* HADLEY G. Linear Programming, Addison-Wesley Publishing Company, INC, 1965
* BERTSIMAS D. and J. N. TSITSIKLIS Introduction to Linear Optimization,  Athena Scientific  1997
* GASS S. Linear Programming Methods and Applications, McGraw-Hill 1985
Related academic journals:
* Mathematical Programming Journal, Series A and Series B
* INFORMS Transactions on Education (ITE) 

Τελευταία αναθεώρηση της 19:22, 14 Δεκεμβρίου 2024

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΕ631K

Semester

6

Course Title

Linear Programming

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

The course learning outcomes are: the introduction of the students to linear programming formulation, the comprehension of the mathematical properties of linear programming problems, the understanding of the theory underlying the simplex algorithm, the understanding of the dual theory and its interpretation, the use of LINDO software package to solve linear programming problems

Upon successful completion of the course the student will be able to:

  1. to model linear programming problems.
  2. to solve linear programming problems with the Simplex method.
  3. to apply the appropriate modifications of Simplex method when it is necessary.
  4. to validate and interpret the results obtained when linear programming problems are solved using LINDO software
General Competences
  • Working independently
  • Decision-making
  • Adapting to new situations
  • Production of free, creative and inductive thinking
  • Synthesis of data and information, with the use of the necessary technology.

Syllabus

  • Formulating linear programming problems
  • Graphical solution
  • The Simplex Method 
  • The bib M method
  • The Two-Phase Simplex Method
  • Dual theory
  • Sensitivity analysis
  • Transportation problem
  • Assignment problem
  • Transshipment problem
  • Other network problems

Teaching and Learning Methods - Evaluation

Delivery

Face-to-face

Use of Information and Communications Technology

Lindo Software, Email, class web, MSTeams

Teaching Methods
Activity Semester Workload
Lectures 39
Independent study 78
Fieldwork (3-4 set of homework) 33
Course total 150
Student Performance Evaluation

LANGUAGE OF EVALUATION: Greek
METHODS OF EVALUATION: Final exam (100%)

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:

  • Βασιλείου Β. και Τσαντας Ν., Εισαγωγή Στην Επιχειρησιακή Έρευνα, Εκδόσεις Ζητη 2000.
  • Κολετσος Κ., Στογιαννης Δ. Επιχειρησιακή Έρευνα Θεωρία, Αλγόριθμοι Και Εφαρμογές, Εκδόσεις, Συμεών, 2021.
  • Κουνιας Σ. και Φακινος Φ., Γραμμικός Προγραμματισμός, Εκδόσεις Ζητη, Θεσσαλονίκη 1999.
  • Παπαρριζος Π., Γραμμικός Προγραμματισμός. Εκδόσεις Ζυγός, Θεσσαλονίκη 1999.
  • Σισκος Γ., Γραμμικός Προγραμματισμός, Εκδόσεις Νέων Τεχνολογιών, Αθήνα 1998.
  • Υψηλαντης Π. Μέθοδοι και Τεχνικές Λήψης Αποφάσεων, Εκδόσεις Προπομπός, 2015.
  • Φακινου Δ. Και Οικονομου Α., Εισαγωγή Στην Επιχειρησιακή Έρευνα- Θεωρία Και Ασκήσεις, Αθήνα 2003.
  • Βertsimas D. And J. N. Τsitsiklis Introduction to Linear Optimization, Athena Scientific, 1997.
  • Κουνετάς, Κ., Χατζησταμούλου, Ν., 2015. Εισαγωγή Στην Επιχειρησιακή Έρευνα Και Στον Γραμμικό Προγραμματισμό. Λύσεις Προβλημάτων Με Το Πρόγραμμα R. [Ηλεκτρ. Βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο Στο: Http://Hdl.Handle.Net/11419/5699.
  • Gass S. Linear Programming Methods and Applications, Mcgraw-Hill 1985.
  • Hadley G. Linear Programming, Addison-Wesley Publishing Company, Inc, 1965.
  • Hillier F. S. And G. J. Lieberman Introduction Operations Research. The Mcgraw-Hill Companies, 2001.
  • RardinL. R. Βελτιστοποίηση στην Επιχειρησιακή Έρευνα, ΕκδοσειςΚλειδαριθμος, 2022.
  • TahaH., Εισαγωγή Στην Επιχειρησιακή Έρευνα, 10η Έκδοση, Eκδόσεις Α. Τζιολα & YιοιA.E., 2017.
  • Winston W. L., Operations Research (Applications And Algorithms). Duxbury Press (International Thomson Publishing) 1994.
  • [Περιοδικό / Journal] Mathematical Programming Journal, Series A and Series B.
  • [Περιοδικό / Journal] INFORMS Transactions on Education (ITE).