Διαφορική Γεωμετρία (ΓΕ2): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΓΕ2 |- ! Εξάμηνο | 1 |- ! Τίτλος Μαθήματος | ΔΙ...') |
|||
Γραμμή 108: | Γραμμή 108: | ||
<!-- Για να επεξεργαστείτε την βιβλιογραφία, επισκευτείτε την σελίδα --> | <!-- Για να επεξεργαστείτε την βιβλιογραφία, επισκευτείτε την σελίδα --> | ||
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF: | <!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAM120-Biblio --> | ||
{{ | {{MAM120-Biblio}} |
Αναθεώρηση της 10:51, 26 Αυγούστου 2022
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΓΕ2 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | Γραμμική Άλγεβρα, Γενική Τοπολογία, Ανάλυση Πολλών Μεταβλητών. |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος.
Συμβουλευτείτε το Παράρτημα Α
Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στις θεμελιώδεις έννοιες και στα εργαλεία της θεωρίας των διαφορίσιμων πολυπτυγμάτων. Εισάγονται βασικές έννοιες, όπως διαφορίσιμα πολύπτυγμα, διαφορίσιμα πολυπτύγματα με σύνορο, διανυσματική δέσμη, συνοχή, διαφορίσιμα υποπολυπτύγματα και συνομολογία de Rham. Το μάθημα αυτό αποτελεί βασική προϋπόθεση για το μάθημα της Γεωμετρίας Riemann. Στο τέλος του μαθήματος περιμένουμε από τον μεταπτυχιακό φοιτητή να έχει κατανοήσει τις έννοιες, τους ορισμούς και τα κύρια θεωρήματα τα οποία αναλύονται στο μάθημα. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στο να μπορεί ο φοιτητής να αποκτήσει ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων στη σύγχρονη Διαφορική Γεωμετρία. |
Περιεχόμενο Μαθήματος
- Τοπολογικά και διαφορίσιμα πολυπτύγματα.
- Διαφορίσιμες απεικονίσεις.
- Εφαπτόμενη και συνεφαπτόμενη δέσμη.
- Διανυσματικά πεδία και ροές.
- Διαφορίσιμα υποπολυπτύγματα-Θεώρημα του Frobenius.
- Διανυσματικές δέσμες.
- Συνοχές και παράλληλη μεταφορά.
- Διαφορικές μορφές.
- Συνομολογία de Rham.
- Ολοκλήρωση σε πολυπτύγματα με σύνορο.
- Το θεώρημα του Stokes.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Εβδομαδιαίες εργασίες, παρουσιάσεις, γραπτές εξετάσεις στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων. |
Συνιστώμενη Βιβλιογραφία
- M. do Carmo, Riemannian Geometry, Birkhaüser Boston, Inc., Boston, MA, 1992.
- J. Jost, Riemannian Geometry and Geometric Analysis, Seventh edition, Universitext, Springer, 2017.
- J. Lee, Introduction to smooth manifolds, Second edition, Graduate texts in Mathematics, 218, Springer, 2013.
- Δ. Κουτρουφιώτης, Διαφορική Γεωμετρία, Πανεπιστήμιο Ιωαννίνων, 1994.