Ρευστομηχανικη (ΕΜ4): Διαφορά μεταξύ των αναθεωρήσεων
μ (Ο Mathwikiadmin μετακίνησε τη σελίδα Ρευστομηχανικη (ΕΜ4Α) στην Ρευστομηχανικη (ΕΜ4) χωρίς να αφήσει ανακατεύθυνση) |
Χωρίς σύνοψη επεξεργασίας |
||
(8 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Fluid Mechanics (ΕΜ4)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 39: | Γραμμή 41: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Γραμμή 59: | Γραμμή 61: | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
Κινηματική των Ρευστών, Ανάλυση της κίνησης του ρευστού, Εξίσωση συνέχειας και ροϊκή συνάρτηση, Εξισώσεις κίνησης για Ιδανικά και Πραγματικά Ρευστά, Στρωτή και Τυρβώδης ροή, Οριακό στρώμα, Ροή με αντίξοη βαθμίδα πίεσης, Αριθμητικές μέθοδοι στη Ρευστομηχανική, Ταξινόμηση των προβλημάτων της Ρευστοδυναμικής και των αντίστοιχων εξισώσεων που τα περιγράφουν, Βασικά αριθμητικά σχήματα της μεθόδου πεπερασμένων διαφορών, Σφάλμα αποκοπής και η έννοια της συμβατότητας αριθμητικού σχήματος, Ευστάθεια και σύγκλιση αριθμητικού σχήματος, Μέθοδος των πεπερασμένων όγκων, Εισαγωγή στην μέθοδο σταθμισμένων υπολοίπων, Μέθοδος των πεπερασμένων στοιχείων. Το μάθημα περιλαμβάνει και πρακτική εφαρμογή σε εργαστήριο Η/Υ (Εργαστήριο | Κινηματική των Ρευστών, Ανάλυση της κίνησης του ρευστού, Εξίσωση συνέχειας και ροϊκή συνάρτηση, Εξισώσεις κίνησης για Ιδανικά και Πραγματικά Ρευστά, Στρωτή και Τυρβώδης ροή, Οριακό στρώμα, Ροή με αντίξοη βαθμίδα πίεσης, Αριθμητικές μέθοδοι στη Ρευστομηχανική, Ταξινόμηση των προβλημάτων της Ρευστοδυναμικής και των αντίστοιχων εξισώσεων που τα περιγράφουν, Βασικά αριθμητικά σχήματα της μεθόδου πεπερασμένων διαφορών, Σφάλμα αποκοπής και η έννοια της συμβατότητας αριθμητικού σχήματος, Ευστάθεια και σύγκλιση αριθμητικού σχήματος, Μέθοδος των πεπερασμένων όγκων, Εισαγωγή στην μέθοδο σταθμισμένων υπολοίπων, Μέθοδος των πεπερασμένων στοιχείων. Το μάθημα περιλαμβάνει και πρακτική εφαρμογή σε εργαστήριο Η/Υ (Εργαστήριο Εφαρμοσμένων και Υπολογιστικών Μαθηματικών). | ||
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | === Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | ||
Γραμμή 69: | Γραμμή 71: | ||
|- | |- | ||
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | ! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | ||
| Χρήση του | | | ||
Χρήση του Εργαστηρίου Εφαρμοσμένων και Υπολογιστικών Μαθηματικών | |||
|- | |- | ||
! Οργάνωση Διδασκαλίας | ! Οργάνωση Διδασκαλίας |
Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΕΜ4 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα είναι μια εισαγωγή στις βασικές έννοιες της Ρευστομηχανικής και της Υπολογιστικής Ρευστοδυναμικής. Οι στόχοι του μαθήματος είναι:
Με την ολοκλήρωση του μαθήματος ο φοιτητής θα είναι σε θέση να επιλύει με αναλυτικές, προσεγγιστικές και αριθμητικές τεχνικές προβλήματα της Μηχανικής των Ρευστών και να εμβαθύνει στην περαιτέρω κατανόηση τέτοιων μεθόδων. |
---|---|
Γενικές Ικανότητες |
Το μάθημα αποσκοπεί στο να μπορεί ο μεταπτυχιακός φοιτητής να αποκτήσει την ικανότητα ανάλυσης και σύνθεσης βασικών γνώσεων της Ρευστομηχανικής και γενικότερα των Εφαρμοσμένων Μαθηματικών. Ο μεταπτυχιακός φοιτητής θα μπορεί να αντιμετωπίσει με τη βοήθεια αναλυτικών και προσεγγιστικών μεθόδων προβλήματα των σύγχρονων Εφαρμοσμένων Μαθηματικών και της Μηχανικής των Ρευστών δίνοντας του τη δυνατότητα να μπορεί να εργαστεί σε ένα διεθνές διεπιστημονικό περιβάλλον. Ο μεταπτυχιακός φοιτητής στα πλαίσια του μαθήματος εργάζεται αυτόνομα ή/και σε ομάδα. |
Περιεχόμενο Μαθήματος
Κινηματική των Ρευστών, Ανάλυση της κίνησης του ρευστού, Εξίσωση συνέχειας και ροϊκή συνάρτηση, Εξισώσεις κίνησης για Ιδανικά και Πραγματικά Ρευστά, Στρωτή και Τυρβώδης ροή, Οριακό στρώμα, Ροή με αντίξοη βαθμίδα πίεσης, Αριθμητικές μέθοδοι στη Ρευστομηχανική, Ταξινόμηση των προβλημάτων της Ρευστοδυναμικής και των αντίστοιχων εξισώσεων που τα περιγράφουν, Βασικά αριθμητικά σχήματα της μεθόδου πεπερασμένων διαφορών, Σφάλμα αποκοπής και η έννοια της συμβατότητας αριθμητικού σχήματος, Ευστάθεια και σύγκλιση αριθμητικού σχήματος, Μέθοδος των πεπερασμένων όγκων, Εισαγωγή στην μέθοδο σταθμισμένων υπολοίπων, Μέθοδος των πεπερασμένων στοιχείων. Το μάθημα περιλαμβάνει και πρακτική εφαρμογή σε εργαστήριο Η/Υ (Εργαστήριο Εφαρμοσμένων και Υπολογιστικών Μαθηματικών).
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στη τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
Χρήση του Εργαστηρίου Εφαρμοσμένων και Υπολογιστικών Μαθηματικών | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Μηχανική των Ρευστών - Τόμος 1, Ά. Παπαϊωάννου, Έκδοση 2η, 2002, Εκδότης: Γ. Γκέλμπεσης
- Υπολογιστική Μηχανική Ρευστών, Σούλης Ι., Έκδοση 1η, 2008, Εκδότης: Χ.Ν. Αϊβαζής
- Numerical heat transfer and fluid flow, S.V. Patankar, McGraw-Hill, New York, 1980
- The Finite Element Method, Vol. 1, The Basis, O.C. Zienkiewicz, R.L. Taylor, 5th Ed., Butterworth-Heinemann, Oxford, 2000
- Computational Techniques for fluid Dynamics, C.A.J. Fletcher Volumes I and II, 2nd Ed. Springer-Verlag, Berlin, 1991.